Suppr超能文献

糖酵解通量信号控制小鼠胚胎中胚层发育。

Glycolytic flux-signaling controls mouse embryo mesoderm development.

机构信息

Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

Elife. 2022 Dec 5;11:e83299. doi: 10.7554/eLife.83299.

Abstract

How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here, we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.

摘要

细胞代谢状态如何影响细胞程序是一个基本的、未解决的问题。在这里,我们以体节形成(somitogenesis)为实验模型,研究了糖酵解通量如何影响胚胎发育。首先,我们确定了 1,6-二磷酸果糖(fructose 1,6-bisphosphate,FBP)作为一种体内监测代谢物,可以反映植入后小鼠胚胎体节中糖酵解通量。我们发现,FBP 而非其他糖酵解代谢物(如果糖 6-磷酸和 3-磷酸甘油酸)的培养基补充会损害中胚层的分段。为了遗传操纵糖酵解通量和 FBP 水平,我们生成了一种能够条件性过表达细胞质 PFKFB3(cytoPFKFB3)的小鼠模型。过表达 cytoPFKFB3 确实会导致糖酵解通量/FBP 水平增加,并导致中胚层分段受损,同时 Wnt 信号下调,类似于 FBP 补充的作用。为了探究糖酵解通量信号的机制,我们进行了亚细胞蛋白质组分析,发现过表达 cytoPFKFB3 会改变 PSM 细胞中某些蛋白质(包括糖酵解酶)的亚细胞定位。具体而言,我们发现 FBP 补充会导致 Pfkl 和 Aldoa 从核可溶部分耗竭。综合来看,我们提出 FBP 作为一种连接糖酵解和体节形成的通量信号代谢物发挥作用,可能通过调节亚细胞蛋白定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6885/9771359/d719baaf9ff9/elife-83299-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验