Suppr超能文献

糖酵解非依赖性葡萄糖代谢在哺乳动物胚胎发生过程中区分滋养外胚层与内细胞团命运。

Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis.

机构信息

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Dev Cell. 2020 Apr 6;53(1):9-26.e4. doi: 10.1016/j.devcel.2020.02.015. Epub 2020 Mar 19.

Abstract

The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.

摘要

小鼠胚胎在 8 细胞期经历致密化,其向 16 细胞的转变产生极性,使得外层顶端细胞成为滋养外胚层 (TE) 前体细胞,而内细胞团 (ICM) 则产生胚胎。在这里,我们报告说,这个第一个细胞命运特化事件受葡萄糖控制。葡萄糖不会为线粒体 ATP 生成提供燃料,糖酵解对于囊胚形成是可有可无的。此外,葡萄糖无助于合成氨基酸、脂肪酸和核苷。相反,己糖胺生物合成途径 (HBP) 代谢的葡萄糖允许 YAP1 核定位。此外,戊糖磷酸途径 (PPP) 依赖葡萄糖的核苷酸合成以及神经酰胺 (S1P) 信号转导激活 mTOR 并允许 Tfap2c 的翻译。YAP1、TEAD4 和 TFAP2C 相互作用形成一个复合物,控制 TE 特异性基因转录。葡萄糖信号在 ICM 特化中不起作用,而这种发育代谢过程专门控制 TE 细胞命运。

相似文献

引用本文的文献

9
coordinately promotes metabolic shift and regulates totipotency exit.协同促进代谢转变并调节全能性退出。
Life Med. 2025 Mar 14;4(3):lnaf013. doi: 10.1093/lifemedi/lnaf013. eCollection 2025 Jun.

本文引用的文献

1
GPCRs join the mTORC1 regulatory network.G 蛋白偶联受体(GPCRs)加入了 mTORC1 调控网络。
Nat Cell Biol. 2019 May;21(5):538-539. doi: 10.1038/s41556-019-0320-7.
2
mTOR as a central hub of nutrient signalling and cell growth.mTOR 作为营养信号和细胞生长的中央枢纽。
Nat Cell Biol. 2019 Jan;21(1):63-71. doi: 10.1038/s41556-018-0205-1. Epub 2019 Jan 2.
3
Genetic Control of Early Cell Lineages in the Mammalian Embryo.哺乳动物胚胎中早期细胞谱系的遗传控制。
Annu Rev Genet. 2018 Nov 23;52:185-201. doi: 10.1146/annurev-genet-120116-024544. Epub 2018 Sep 5.
4
Instructions for Assembling the Early Mammalian Embryo.组装早期哺乳动物胚胎的说明。
Dev Cell. 2018 Jun 18;45(6):667-679. doi: 10.1016/j.devcel.2018.05.013.
6
A Method for the Acute and Rapid Degradation of Endogenous Proteins.一种内源性蛋白质急性快速降解的方法。
Cell. 2017 Dec 14;171(7):1692-1706.e18. doi: 10.1016/j.cell.2017.10.033. Epub 2017 Nov 16.
9
Glucose feeds the TCA cycle via circulating lactate.葡萄糖通过循环的乳酸为三羧酸循环提供能量。
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
10
Lactate Metabolism in Human Lung Tumors.人类肺部肿瘤中的乳酸代谢
Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验