Suppr超能文献

机器学习通过睡眠-觉醒脑电图识别帕金森病大鼠模型。

Machine Learning Identifies a Rat Model of Parkinson's Disease via Sleep-Wake Electroencephalogram.

作者信息

Lu Jun, Sorooshyari Siamak K

机构信息

Stroke Center, Department of Neurology, 1st Hospital of Jilin University, Changchun 120021, China.

Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Neuroscience. 2023 Feb 1;510:1-8. doi: 10.1016/j.neuroscience.2022.11.035. Epub 2022 Dec 5.

Abstract

Alpha-synuclein induced degeneration of the midbrain substantia nigra pars compact (SNc) dopaminergic neurons causes Parkinson's disease (PD). Rodent studies demonstrate that nigrostriatal dopamine stimulates pallidal neurons which, via the topographical pallidocortical pathway, regulate cortical activity and functions. We hypothesize that nigrostriatal dopamine acting at the basal ganglia regulates cortical activity in sleep and wake state, and its depletion systemically alters electroencephalogram (EEG) across frequencies during sleep-wake state. Compared to control rats, 6-hydroxydopamine induced selective SNc lesions increased overall EEG power (positive synchronization) across 0.5-60 Hz during wake, NREM (non-rapid eye movement) sleep, and REM sleep. Application of machine learning (ML) to seven EEG features computed at a single or combined spectral bands during sleep-wake differentiated SNc lesions from controls at high accuracy. ML algorithms construct a model based on empirical data to make predictions on subsequent data. The accuracy of the predictive results indicate that nigrostriatal dopamine depletion increases global EEG spectral synchronization in wake, NREM sleep, and REM sleep. The EEG changes can be exploited by ML to identify SNc lesions at a high accuracy.

摘要

α-突触核蛋白诱导中脑黑质致密部(SNc)多巴胺能神经元变性会导致帕金森病(PD)。啮齿动物研究表明,黑质纹状体多巴胺刺激苍白球神经元,这些神经元通过拓扑性苍白球皮质通路调节皮质活动和功能。我们假设,作用于基底神经节的黑质纹状体多巴胺在睡眠和清醒状态下调节皮质活动,其耗竭会系统性地改变睡眠-清醒状态下各频率的脑电图(EEG)。与对照大鼠相比,6-羟基多巴胺诱导的选择性SNc损伤在清醒、非快速眼动(NREM)睡眠和快速眼动(REM)睡眠期间增加了0.5 - 60Hz范围内的总体EEG功率(正同步)。在睡眠-清醒期间,将机器学习(ML)应用于在单个或组合频谱带计算的七个EEG特征,能够以高精度区分SNc损伤和对照。ML算法基于经验数据构建模型,以便对后续数据进行预测。预测结果的准确性表明,黑质纹状体多巴胺耗竭会增加清醒、NREM睡眠和REM睡眠中的整体EEG频谱同步。ML可以利用EEG变化以高精度识别SNc损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验