Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, Iran.
Department of Information Technology and Communications, Azarbaijan Shahid Madani University, Tabriz, Iran.
Comput Math Methods Med. 2023 Jun 2;2023:1493676. doi: 10.1155/2023/1493676. eCollection 2023.
Parkinson's disease (PD) is one of the significant common neurological disorders of the current age that causes uncontrollable movements like shaking, stiffness, and difficulty. The early clinical diagnosis of this disease is essential for preventing the progression of PD. Hence, an innovative method is proposed here based on combining the crow search algorithm and decision tree (CSADT) for the early PD diagnosis. This approach is used on four crucial Parkinson's datasets, including meander, spiral, voice, and speech-Sakar. Using the presented method, PD is effectively diagnosed by evaluating each dataset's critical features and extracting the primary practical outcomes. The used algorithm was compared with other machine learning algorithms of k-nearest neighbor (KNN), support vector machine (SVM), naive Baye (NB), multilayer perceptron (MLP), decision tree (DT), random tree, logistic regression, support vector machine of radial base functions (SVM of RBFs), and combined classifier in terms of accuracy, recall, and combination measure F1. The analytical results emphasize the used algorithm's superiority over the other selected ones. The proposed model yields nearly 100% accuracy through various trials on the datasets. Notably, a high detection speed achieved the lowest detection time of 2.6 seconds. The main novelty of this paper is attributed to the accuracy of the presented PD diagnosis method, which is much higher than its counterparts.
帕金森病(PD)是当前时代常见的重大神经退行性疾病之一,可导致无法控制的运动,如颤抖、僵硬和困难。这种疾病的早期临床诊断对于预防 PD 的进展至关重要。因此,这里提出了一种基于结合乌鸦搜索算法和决策树(CSADT)的创新方法,用于早期 PD 诊断。该方法用于四个关键的帕金森数据集,包括曲折、螺旋、声音和语音-Sakar。通过评估每个数据集的关键特征并提取主要实用结果,使用提出的方法有效地诊断了 PD。将所使用的算法与其他机器学习算法(如 k-最近邻(KNN)、支持向量机(SVM)、朴素贝叶斯(NB)、多层感知机(MLP)、决策树(DT)、随机树、逻辑回归、径向基函数支持向量机(RBFs)和组合分类器)进行了比较,以准确性、召回率和组合度量 F1 为标准。分析结果强调了所使用算法相对于其他选定算法的优越性。该模型通过在数据集上进行的各种试验,几乎达到了 100%的准确率。值得注意的是,它还实现了较高的检测速度,最低检测时间为 2.6 秒。本文的主要新颖性在于所提出的 PD 诊断方法的准确性,其准确性明显高于其他方法。