Suppr超能文献

基于贝叶斯时空ETAS模型的地震活动性预测改进

Improvements to seismicity forecasting based on a Bayesian spatio-temporal ETAS model.

作者信息

Ebrahimian Hossein, Jalayer Fatemeh, Maleki Asayesh Behnam, Hainzl Sebastian, Zafarani Hamid

机构信息

Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy.

Institute for Risk and Disaster Reduction (IRDR), University College London, London, UK.

出版信息

Sci Rep. 2022 Dec 5;12(1):20970. doi: 10.1038/s41598-022-24080-1.

Abstract

The epidemic-type aftershock sequence (ETAS) model provides an effective tool for predicting the spatio-temporal evolution of aftershock clustering in short-term. Based on this model, a fully probabilistic procedure was previously proposed by the first two authors for providing spatio-temporal predictions of aftershock occurrence in a prescribed forecasting time interval. This procedure exploited the versatility of the Bayesian inference to adaptively update the forecasts based on the incoming information provided by the ongoing seismic sequence. In this work, this Bayesian procedure is improved: (1) the likelihood function for the sequence has been modified to properly consider the piecewise stationary integration of the seismicity rate; (2) the spatial integral of seismicity rate over the whole aftershock zone is calculated analytically; (3) background seismicity is explicitly considered within the forecasting procedure; (4) an adaptive Markov Chain Monte Carlo simulation procedure is adopted; (5) leveraging the stochastic sequences generated by the procedure in the forecasting interval, the N-test and the S-test are adopted to verify the forecasts. This framework is demonstrated and verified through retrospective early forecasting of seismicity associated with the 2017-2019 Kermanshah seismic sequence activities in western Iran in two distinct phases following the main events with Mw7.3 and Mw6.3, respectively.

摘要

震后序列的流行病型(ETAS)模型为短期预测余震聚类的时空演化提供了一种有效工具。基于该模型,前两位作者先前提出了一种全概率程序,用于在规定的预测时间间隔内提供余震发生的时空预测。该程序利用贝叶斯推理的通用性,根据正在进行的地震序列提供的新信息自适应更新预测。在这项工作中,对该贝叶斯程序进行了改进:(1)修改了序列的似然函数,以适当考虑地震活动率的分段平稳积分;(2)解析计算了整个余震区地震活动率的空间积分;(3)在预测过程中明确考虑背景地震活动;(4)采用自适应马尔可夫链蒙特卡罗模拟程序;(5)利用该程序在预测区间生成的随机序列,采用N检验和S检验来验证预测。通过分别对伊朗西部2017 - 2019年克尔曼沙赫地震序列活动(分别发生了Mw7.3和Mw6.3的主震)在两个不同阶段进行回顾性早期地震活动预测,对该框架进行了演示和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b061/9723186/5cba8165154e/41598_2022_24080_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验