Suppr超能文献

机器学习对社区获得性肺炎住院患者中耐甲氧西林金黄色葡萄球菌风险的分层作用。

Machine Learning To Stratify Methicillin-Resistant Staphylococcus aureus Risk among Hospitalized Patients with Community-Acquired Pneumonia.

机构信息

Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA.

Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, Illinois, USA.

出版信息

Antimicrob Agents Chemother. 2023 Jan 24;67(1):e0102322. doi: 10.1128/aac.01023-22. Epub 2022 Dec 6.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon but serious cause of community-acquired pneumonia (CAP). A lack of validated MRSA CAP risk factors can result in overuse of empirical broad-spectrum antibiotics. We sought to develop robust models predicting the risk of MRSA CAP using machine learning using a population-based sample of hospitalized patients with CAP admitted to either a tertiary academic center or a community teaching hospital. Data were evaluated using a machine learning approach. Cases were CAP patients with MRSA isolated from blood or respiratory cultures within 72 h of admission; controls did not have MRSA CAP. The Classification Tree Analysis algorithm was used for model development. Model predictions were evaluated in sensitivity analyses. A total of 21 of 1,823 patients (1.2%) developed MRSA within 72 h of admission. MRSA risk was higher among patients admitted to the intensive care unit (ICU) in the first 24 h who required mechanical ventilation than among ICU patients who did not require ventilatory support (odds ratio [OR], 8.3; 95% confidence interval [CI], 2.4 to 32). MRSA risk was lower among patients admitted to ward units than among those admitted to the ICU (OR, 0.21; 95% CI, 0.07 to 0.56) and lower among ICU patients without a history of antibiotic use in the last 90 days than among ICU patients with antibiotic use in the last 90 days (OR, 0.03; 95% CI, 0.002 to 0.59). The final machine learning model was highly accurate (receiver operating characteristic [ROC] area = 0.775) in training and jackknife validity analyses. We identified a relatively simple machine learning model that predicted MRSA risk in hospitalized patients with CAP within 72 h postadmission.

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)是社区获得性肺炎(CAP)的罕见但严重的病因。由于缺乏经过验证的 MRSA CAP 风险因素,可能会导致经验性广谱抗生素的过度使用。我们试图使用基于人群的 CAP 住院患者样本,使用机器学习为 CAP 患者开发预测 MRSA CAP 风险的稳健模型,这些患者被收入三级学术中心或社区教学医院。使用机器学习方法评估数据。病例为入院后 72 小时内从血液或呼吸道培养物中分离出 MRSA 的 CAP 患者;对照组未发生 MRSA CAP。使用分类树分析算法进行模型开发。在敏感性分析中评估模型预测。在入院后 72 小时内,共有 1823 名患者中的 21 名(1.2%)发生了 MRSA。与不需要通气支持的 ICU 患者相比,在入院 24 小时内入住 ICU 且需要机械通气的患者中,MRSA 的风险更高(比值比[OR],8.3;95%置信区间[CI],2.4 至 32)。与入住 ICU 的患者相比,入住病房的患者发生 MRSA 的风险较低(OR,0.21;95%CI,0.07 至 0.56);与在过去 90 天内使用过抗生素的 ICU 患者相比,在过去 90 天内未使用抗生素的 ICU 患者的风险较低(OR,0.03;95%CI,0.002 至 0.59)。最终的机器学习模型在训练和 jackknife 有效性分析中具有很高的准确性(接收者操作特征[ROC]面积=0.775)。我们确定了一种相对简单的机器学习模型,可预测入院后 72 小时内 CAP 住院患者的 MRSA 风险。

相似文献

引用本文的文献

1
The application of machine learning in clinical microbiology and infectious diseases.机器学习在临床微生物学和传染病中的应用。
Front Cell Infect Microbiol. 2025 May 1;15:1545646. doi: 10.3389/fcimb.2025.1545646. eCollection 2025.
8
[Antibiotic treatment of community-acquired and hospital-acquired pneumonia].[社区获得性肺炎和医院获得性肺炎的抗生素治疗]
Med Klin Intensivmed Notfmed. 2023 Sep;118(6):454-463. doi: 10.1007/s00063-023-01033-8. Epub 2023 Jul 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验