Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, Downers Grove, Illinois, USA.
Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, Illinois, USA.
Antimicrob Agents Chemother. 2023 Jan 24;67(1):e0102322. doi: 10.1128/aac.01023-22. Epub 2022 Dec 6.
Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon but serious cause of community-acquired pneumonia (CAP). A lack of validated MRSA CAP risk factors can result in overuse of empirical broad-spectrum antibiotics. We sought to develop robust models predicting the risk of MRSA CAP using machine learning using a population-based sample of hospitalized patients with CAP admitted to either a tertiary academic center or a community teaching hospital. Data were evaluated using a machine learning approach. Cases were CAP patients with MRSA isolated from blood or respiratory cultures within 72 h of admission; controls did not have MRSA CAP. The Classification Tree Analysis algorithm was used for model development. Model predictions were evaluated in sensitivity analyses. A total of 21 of 1,823 patients (1.2%) developed MRSA within 72 h of admission. MRSA risk was higher among patients admitted to the intensive care unit (ICU) in the first 24 h who required mechanical ventilation than among ICU patients who did not require ventilatory support (odds ratio [OR], 8.3; 95% confidence interval [CI], 2.4 to 32). MRSA risk was lower among patients admitted to ward units than among those admitted to the ICU (OR, 0.21; 95% CI, 0.07 to 0.56) and lower among ICU patients without a history of antibiotic use in the last 90 days than among ICU patients with antibiotic use in the last 90 days (OR, 0.03; 95% CI, 0.002 to 0.59). The final machine learning model was highly accurate (receiver operating characteristic [ROC] area = 0.775) in training and jackknife validity analyses. We identified a relatively simple machine learning model that predicted MRSA risk in hospitalized patients with CAP within 72 h postadmission.
耐甲氧西林金黄色葡萄球菌(MRSA)是社区获得性肺炎(CAP)的罕见但严重的病因。由于缺乏经过验证的 MRSA CAP 风险因素,可能会导致经验性广谱抗生素的过度使用。我们试图使用基于人群的 CAP 住院患者样本,使用机器学习为 CAP 患者开发预测 MRSA CAP 风险的稳健模型,这些患者被收入三级学术中心或社区教学医院。使用机器学习方法评估数据。病例为入院后 72 小时内从血液或呼吸道培养物中分离出 MRSA 的 CAP 患者;对照组未发生 MRSA CAP。使用分类树分析算法进行模型开发。在敏感性分析中评估模型预测。在入院后 72 小时内,共有 1823 名患者中的 21 名(1.2%)发生了 MRSA。与不需要通气支持的 ICU 患者相比,在入院 24 小时内入住 ICU 且需要机械通气的患者中,MRSA 的风险更高(比值比[OR],8.3;95%置信区间[CI],2.4 至 32)。与入住 ICU 的患者相比,入住病房的患者发生 MRSA 的风险较低(OR,0.21;95%CI,0.07 至 0.56);与在过去 90 天内使用过抗生素的 ICU 患者相比,在过去 90 天内未使用抗生素的 ICU 患者的风险较低(OR,0.03;95%CI,0.002 至 0.59)。最终的机器学习模型在训练和 jackknife 有效性分析中具有很高的准确性(接收者操作特征[ROC]面积=0.775)。我们确定了一种相对简单的机器学习模型,可预测入院后 72 小时内 CAP 住院患者的 MRSA 风险。