McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
Nat Commun. 2024 Mar 6;15(1):2036. doi: 10.1038/s41467-024-46211-0.
Methicillin-resistant Staphylococcus aureus (MRSA) poses significant morbidity and mortality in hospitals. Rapid, accurate risk stratification of MRSA is crucial for optimizing antibiotic therapy. Our study introduced a deep learning model, PyTorch_EHR, which leverages electronic health record (EHR) time-series data, including wide-variety patient specific data, to predict MRSA culture positivity within two weeks. 8,164 MRSA and 22,393 non-MRSA patient events from Memorial Hermann Hospital System, Houston, Texas are used for model development. PyTorch_EHR outperforms logistic regression (LR) and light gradient boost machine (LGBM) models in accuracy (AUROC = 0.911, AUROC = 0.857, AUROC = 0.892). External validation with 393,713 patient events from the Medical Information Mart for Intensive Care (MIMIC)-IV dataset in Boston confirms its superior accuracy (AUROC = 0.859, AUROC = 0.816, AUROC = 0.838). Our model effectively stratifies patients into high-, medium-, and low-risk categories, potentially optimizing antimicrobial therapy and reducing unnecessary MRSA-specific antimicrobials. This highlights the advantage of deep learning models in predicting MRSA positive cultures, surpassing traditional machine learning models and supporting clinicians' judgments.
耐甲氧西林金黄色葡萄球菌(MRSA)在医院中造成重大发病率和死亡率。快速、准确地对 MRSA 进行风险分层对于优化抗生素治疗至关重要。我们的研究引入了一个深度学习模型 PyTorch_EHR,该模型利用电子健康记录(EHR)时间序列数据,包括各种患者特定数据,来预测两周内 MRSA 培养阳性的情况。来自德克萨斯州休斯顿 Memorial Hermann 医院系统的 8164 例 MRSA 和 22393 例非 MRSA 患者事件用于模型开发。PyTorch_EHR 在准确性方面优于逻辑回归(LR)和轻梯度提升机(LGBM)模型(AUROC=0.911、AUROC=0.857、AUROC=0.892)。在波士顿的医疗信息集市重症监护(MIMIC-IV)数据集 393713 例患者事件的外部验证证实了其更高的准确性(AUROC=0.859、AUROC=0.816、AUROC=0.838)。我们的模型有效地将患者分为高、中、低风险类别,可能优化了抗菌治疗并减少了不必要的 MRSA 特异性抗菌药物的使用。这突出了深度学习模型在预测 MRSA 阳性培养方面的优势,超越了传统的机器学习模型,并支持临床医生的判断。