文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氧化铁纳米颗粒:协同癌症治疗中优化光转换效率的参数

Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

作者信息

Grancharova Tsenka, Zagorchev Plamen, Pilicheva Bissera

机构信息

Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria.

Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria.

出版信息

J Funct Biomater. 2024 Jul 25;15(8):207. doi: 10.3390/jfb15080207.


DOI:10.3390/jfb15080207
PMID:39194645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11355745/
Abstract

Photothermal therapy (PTT) can overcome cancer treatment resistance by enhancing the cell membrane permeability, facilitating drug accumulation, and promoting drug release within the tumor tissue. Iron oxide nanoparticles (IONPs) have emerged as effective agents for PTT due to their unique properties and biocompatibility. Approved for the treatment of anemia, as MRI contrast agents, and as magnetic hyperthermia mediators, IONPs also offer excellent light-to-heat conversion and can be manipulated using external magnetic fields for targeted accumulation in specific tissue. Optimizing parameters such as the laser wavelength, power density, shape, size, iron oxidation state, functionalization, and concentration is crucial for IONPs' effectiveness. In addition to PTT, IONPs enhance other cancer treatment modalities. They improve tumor oxygenation, enhancing the efficacy of radiotherapy and photodynamic therapy. IONPs can also trigger ferroptosis, a programmed cell death pathway mediated by iron-dependent lipid peroxidation. Their magneto-mechanical effect allows them to exert a mechanical force on cancer cells to destroy tumors, minimizing the damage to healthy tissue. This review outlines strategies for the management of the photothermal performance and PTT efficiency with iron oxide nanoparticles, as well as synergies with other cancer therapies.

摘要

光热疗法(PTT)可通过增强细胞膜通透性、促进药物在肿瘤组织内蓄积及释放,克服癌症治疗耐药性。氧化铁纳米颗粒(IONPs)因其独特性质和生物相容性,已成为PTT的有效药剂。IONPs被批准用于治疗贫血、作为磁共振成像造影剂以及作为磁热疗介质,还具有出色的光热转换性能,可通过外部磁场操控以在特定组织中靶向蓄积。优化诸如激光波长、功率密度、形状、尺寸、铁氧化态、功能化及浓度等参数对IONPs的有效性至关重要。除PTT外,IONPs还可增强其他癌症治疗方式。它们可改善肿瘤氧合,提高放疗和光动力疗法的疗效。IONPs还可引发铁死亡,这是一种由铁依赖性脂质过氧化介导的程序性细胞死亡途径。其磁机械效应使其能够对癌细胞施加机械力以破坏肿瘤,同时将对健康组织的损害降至最低。本综述概述了利用氧化铁纳米颗粒管理光热性能和PTT效率的策略,以及与其他癌症疗法的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/03e10c2032f4/jfb-15-00207-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/1c81ec7e24d5/jfb-15-00207-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/c290217acb8a/jfb-15-00207-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/03e10c2032f4/jfb-15-00207-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/1c81ec7e24d5/jfb-15-00207-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/c290217acb8a/jfb-15-00207-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55dd/11355745/03e10c2032f4/jfb-15-00207-g003.jpg

相似文献

[1]
Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

J Funct Biomater. 2024-7-25

[2]
Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.

Pharmaceutics. 2023-3-30

[3]
Rice starch coated iron oxide nanoparticles: A theranostic probe for photoacoustic imaging-guided photothermal cancer therapy.

Int J Biol Macromol. 2021-7-31

[4]
Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.

Acta Biomater. 2017-2

[5]
Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.

Lasers Med Sci. 2017-9

[6]
A light-controllable specific drug delivery nanoplatform for targeted bimodal imaging-guided photothermal/chemo synergistic cancer therapy.

Acta Biomater. 2018-9-19

[7]
Defects or no defects? Or how to design 20-25 nm spherical iron oxide nanoparticles to harness both magnetic hyperthermia and photothermia.

Nanoscale. 2024-11-13

[8]
Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics.

Acta Biomater. 2017-4-15

[9]
Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics.

Curr Med Chem. 2025

[10]
Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.

Theranostics. 2018-5-11

引用本文的文献

[1]
Synthesis of near-infrared molybdenum oxide nanoparticle-functionalized metal-organic frameworks and their application in antitumor studies.

Mikrochim Acta. 2025-8-25

[2]
Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities.

Cancers (Basel). 2025-2-19

[3]
Magnetic Resonance Imaging Techniques for Post-Treatment Evaluation After External Beam Radiation Therapy of Prostate Cancer: Narrative Review.

Clin Pract. 2024-12-27

[4]
Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications.

Int J Mol Sci. 2024-12-11

[5]
Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer.

Ther Deliv. 2025-4

[6]
A comprehensive review on nanoparticle-based photo acoustic: current application and future prospective.

Discov Nano. 2024-12-24

本文引用的文献

[1]
Flame spray pyrolyzed carbon-encapsulated Au/FeO nanoaggregates enabled efficient photothermal therapy and magnetic hyperthermia of esophageal cancer cells.

Front Bioeng Biotechnol. 2024-5-28

[2]
FeO@TiO Microspheres: Harnessing O Release and ROS Generation for Combination CDT/PDT/PTT/Chemotherapy in Tumours.

Nanomaterials (Basel). 2024-3-10

[3]
Boosting chemotherapy of bladder cancer cells by ferroptosis using intelligent magnetic targeting nanoparticles.

Colloids Surf B Biointerfaces. 2024-2

[4]
Research progress of hyperthermia in tumor therapy by influencing metabolic reprogramming of tumor cells.

Int J Hyperthermia. 2023

[5]
Chlorin e6-modified iron oxide nanoparticles for photothermal-photodynamic ablation of glioblastoma cells.

Front Bioeng Biotechnol. 2023-7-19

[6]
Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials.

Exploration (Beijing). 2023-4-5

[7]
Recent progress on single-molecule localization microscopy.

Biophys Rep. 2021-10-31

[8]
Chemotherapy-induced metastasis: molecular mechanisms and clinical therapies.

Acta Pharmacol Sin. 2023-9

[9]
Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.

Chem Rev. 2023-6-14

[10]
Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine.

ACS Nano. 2023-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索