Pei Ming, Pei Yixuan Amy, Zhou Sheng, Mikaeiliagah Elmira, Erickson Christopher, Giertych Benjamin, Akhter Halima, Wang Lei, Stewart Amanda, Parenti Joshua, Wang Bin, Wen Sijin, Sim Sotcheadt, Quenneville Eric, Hansen Kirk C, Frisch Steven, Hu Gangqing
Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.
WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
Bioact Mater. 2022 Nov 25;23:353-367. doi: 10.1016/j.bioactmat.2022.11.012. eCollection 2023 May.
Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both and models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.
关节软骨一旦受损,自我修复能力有限。组织特异性干细胞是软骨再生的一种解决方案;然而,由于软骨再生需要大量高质量的组织特异性干细胞,细胞扩增导致细胞衰老仍然是一个挑战。我们之前的报告表明,人滑膜来源干细胞(SDSCs)、脂肪来源干细胞(ADSCs)、尿液来源干细胞(UDSCs)或真皮成纤维细胞(DFs)沉积的脱细胞细胞外基质(dECM)为恢复人SDSCs的增殖和软骨生成潜力提供了一种解决方案,特别是对于UDSCs沉积的dECM。为了使细胞衍生的dECM(C-dECM)方法在临床上适用,在本研究中,我们评估了上述C-dECM对兔髌下脂肪垫来源干细胞(IPFSCs)的恢复活力,IPFSCs是SDSCs的一种易于获取的替代物,评估了其在兔骨软骨缺损模型中用于功能性软骨修复的应用,以及这种恢复活力潜在的细胞和分子机制。我们发现,C-dECM恢复活力在体内和体外模型中均促进了兔IPFSCs的软骨工程和功能再生,特别是对于UDSCs沉积的dECM,蛋白质组学数据进一步证实了这一点。RNA测序分析表明,间充质-上皮转化(MET)以及炎症介导的巨噬细胞激活和极化可能参与了C-dECM介导的IPFSCs软骨生成能力的促进,这需要进一步研究。