Suppr超能文献

用于高性能量子点敏化太阳能电池的近红外光活性Ag-Zn-Ga-S-Se量子点

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells.

作者信息

Kottayi Roopakala, Veerappan Ilangovan, Sittaramane Ramadasse

机构信息

Department of Physics, Kanchi Mamunivar Govt. Institute for PG Studies and Research, Puducherry-605008, India.

出版信息

Beilstein J Nanotechnol. 2022 Nov 14;13:1337-1344. doi: 10.3762/bjnano.13.110. eCollection 2022.

Abstract

The high light-harvesting ability of quantum dots (QDs) plays an eminent role in the performance of solar cells. In this study, we synthesized Ag-Zn-Ga-S-Se-based alloyed QDs by colloidal hot injection and characterized them. The X-ray photoelectron spectrum analysis confirms the +1, +2, +3, -2, and -2 oxidation states of, respectively, Ag, Zn, Ga, S, and Se in the QDs, and the energy-dispersive X-ray spectrum analysis confirms the 1:1:1:1.5:1.5 stoichiometric ratio of, respectively, Ag, Zn, Ga, S, and Se. These two results indicate the formation of I-II-III-VI-type alloyed crystals (AgZnGaSSe nanocrystals). TEM image analysis reveals the QD nature of the synthesized Ag-Zn-Ga-S-Se nanocrystals. The X-ray diffraction pattern confirms the hexagonal structure. Due to the near-infrared light absorption capability, the synthesized QDs were used as the sensitizer to fabricate QDSCs. The fabricated QDSCs were characterized by using electrochemical impedance spectroscopy and photovoltaic performance studies. The fabricated QDSC have superior electrochemical activity with a photoconversion efficiency of 4.91%.

摘要

量子点(QDs)的高光捕获能力在太阳能电池性能中起着重要作用。在本研究中,我们通过胶体热注入法合成了基于Ag-Zn-Ga-S-Se的合金量子点并对其进行了表征。X射线光电子能谱分析证实了量子点中Ag、Zn、Ga、S和Se分别为+1、+2、+3、-2和-2的氧化态,能量色散X射线光谱分析证实了Ag、Zn、Ga、S和Se的化学计量比为1:1:1:1.5:1.5。这两个结果表明形成了I-II-III-VI型合金晶体(AgZnGaSSe纳米晶体)。透射电子显微镜图像分析揭示了合成的Ag-Zn-Ga-S-Se纳米晶体的量子点性质。X射线衍射图谱证实了其六方结构。由于具有近红外光吸收能力,合成的量子点被用作敏化剂来制备量子点敏化太阳能电池(QDSCs)。通过电化学阻抗谱和光伏性能研究对制备的QDSCs进行了表征。制备的QDSC具有优异的电化学活性,光转换效率为4.91%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffb/9679599/bb2c92f72dfb/Beilstein_J_Nanotechnol-13-1337-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验