Wong Renata, Chang Weng-Long
IEEE Trans Nanobioscience. 2021 Jul;20(3):323-330. doi: 10.1109/TNB.2021.3065051. Epub 2021 Jun 30.
Protein structure prediction (PSP) predicts the native conformation for a given protein sequence. Classically, the problem has been shown to belong to the NP-complete complexity class. Its applications range from physics, through bioinformatics to medicine and quantum biology. It is possible however to speed it up with quantum computational methods, as we show in this paper. Here we develop a fast quantum algorithm for PSP in three-dimensional hydrophobic-hydrophilic model on body-centered cubic lattice with quadratic speedup over its classical counterparts. Given a protein sequence of n amino acids, our algorithm reduces the temporal and spatial complexities to, respectively, [Formula: see text] and O(n logn) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed algorithm we successfully solve the problem on IBM quantum simulator involving 21 and 25 qubits. We confirm the experimentally obtained high probability of success in finding the desired conformation by calculating the theoretical probability estimations.
蛋白质结构预测(PSP)可预测给定蛋白质序列的天然构象。传统上,该问题已被证明属于NP完全复杂度类。其应用范围涵盖从物理学到生物信息学,再到医学和量子生物学。然而,正如我们在本文中所展示的,使用量子计算方法可以加快其速度。在这里,我们针对体心立方晶格上的三维疏水 - 亲水模型开发了一种用于蛋白质结构预测的快速量子算法,与经典算法相比具有二次加速。给定一个由n个氨基酸组成的蛋白质序列,我们的算法将时间和空间复杂度分别降低到[公式:见文本]和O(n logn)。相对于用于NP完全问题的与预言机相关的量子算法,我们将我们的算法确定为最优算法。为了证明所提出算法的可行性,我们在IBM量子模拟器上成功解决了涉及21和25个量子比特的问题。我们通过计算理论概率估计值,证实了实验获得的在找到所需构象方面的高成功率。