Martínez-Alvarenga Hansi, Cardoso-Almoguera Azahara, Gutiérrez María Del Carmen, Benítez Almudena, Martín María de Los Angeles, Caballero Alvaro
Departamento de Química Inorgánica e Ingeniería Química, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, 14071, Córdoba, Spain.
Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Campus Universitario de Rabanales, N-IV, km 396, Córdoba, 14071, Spain.
ACS Appl Mater Interfaces. 2025 Sep 3;17(35):49594-49611. doi: 10.1021/acsami.5c12218. Epub 2025 Aug 25.
, a highly abundant byproduct of olive oil extraction, poses serious environmental concerns due to its massive accumulation. In parallel, the urgent global transition toward greener, more efficient, and sustainable energy storage technologies remains a critical challenge. This work addresses both issues simultaneously by pioneering the valorisation of through its transformation into activated carbons (ACs) for application as cathode matrices in lithium-sulfur (Li-S) batteries. A straightforward, one-step calcination route, aligned with green chemistry principles, was employed using KOH, ZnCl, and HPO as chemical activating agents (AA). The resulting ACs, with a remarkable high carbon content above 85%, exhibited diverse and well-developed porosities and were simply combined with sulfur (AC@S) via mechanical grinding, enabling 70% sulfur infiltration into the porous carbon network. The ACs displayed distinctive textural properties depending on the AA used. Notably, all ACs contained considerable amounts of nitrogen, acting as a self-doped heteroatom that enhances electrochemical functionality without additional treatments. Electrochemical testing revealed excellent performance, particularly for the AC obtained from HPO, which delivered specific capacities of 1100 mAh/g. Near-ideal Coulombic efficiency (∼100%) and a significantly lower decay rate (around 0.07%/cycle) were maintained over ultralong-term cycling. Furthermore, all ACs demonstrated strong polysulfide adsorption, with the AC obtained from HPO achieving the best results, thereby confirming its outstanding electrochemical behavior. These results underscore the potential of as a sustainable precursor for high-performance carbon materials, bridging waste valorisation and green energy storage solutions.
橄榄石,作为橄榄油提取过程中一种大量产生的副产品,因其大量堆积而引发了严重的环境问题。与此同时,全球迫切需要向更绿色、更高效和可持续的储能技术转型,这仍然是一项严峻的挑战。这项工作通过开创性地将橄榄石转化为活性炭(ACs),并将其用作锂硫(Li-S)电池的阴极基质,同时解决了这两个问题。采用了一种符合绿色化学原则的简单一步煅烧路线,使用氢氧化钾(KOH)、氯化锌(ZnCl)和磷酸(H₃PO₄)作为化学活化剂(AA)。所得的活性炭碳含量显著高于85%,具有多样且发达的孔隙结构,通过机械研磨简单地与硫(AC@S)结合,使70%的硫渗入多孔碳网络。根据所使用的活化剂不同,活性炭表现出独特的结构特性。值得注意的是,所有活性炭都含有大量的氮,作为一种自掺杂杂原子,无需额外处理就能增强电化学功能。电化学测试显示出优异的性能,特别是由磷酸制备的活性炭,其比容量达到1100 mAh/g。在超长循环过程中保持了接近理想的库仑效率(约100%)和显著更低的衰减率(约0.07%/循环)。此外,所有活性炭都表现出对多硫化物的强吸附能力,由磷酸制备的活性炭取得了最佳效果,从而证实了其出色的电化学行为表现。这些结果强调了橄榄石作为高性能碳材料可持续前驱体的潜力,它架起了废物资源化和绿色储能解决方案之间的桥梁。