Suppr超能文献

开发和验证一种新的列线图来筛查 MAFLD。

Development and validation of a new nomogram to screen for MAFLD.

机构信息

Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.

出版信息

Lipids Health Dis. 2022 Dec 8;21(1):133. doi: 10.1186/s12944-022-01748-1.

Abstract

BACKGROUND AND AIM

Metabolic dysfunction-associated fatty liver disease (MAFLD) poses significant health and economic burdens on all nations. Thus, identifying patients at risk early and managing them appropriately is essential. This study's goal was to develop a new predictive model for MAFLD. Additionally, to improve the new model's clinical utility, researchers limited the variables to readily available simple clinical and laboratory measures.

METHODS

Based on the National Health and Nutrition Examination Survey (NHANES) cycle 2017-2020.3, the study was a retrospective cross-sectional study involving 7300 participants. By least absolute shrinkage and selection operator (LASSO) regression, significant indicators independently associated with MAFLD were identified, and a predictive model called the MAFLD prediction nomogram (MPN) was developed. The study then compared the MPN with six existing predictive models for MAFLD. The model was evaluated by measuring the area under receiver operating characteristic curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA) curve.

RESULTS

In this study, researchers identified nine predictors from 33 variables, including age, race, arm circumference (AC), waist circumference (WC), body mass index (BMI), alanine aminotransferase (ALT)-to-aspartate aminotransferase (AST) ratio, triglyceride-glucose index (TyG), hypertension, and diabetes. The diagnostic accuracy of the MPN for MAFLD was significantly better than that of the other six existing models in both the training and validation cohorts (AUC 0.868, 95% confidence interval (CI) 0.858-0.877, and AUC 0.863, 95% CI 0.848-0.878, respectively). The MPN showed a higher net benefit than the other existing models.

CONCLUSIONS

This nonimaging-assisted nomogram based on demographics, laboratory factors, anthropometrics, and comorbidities better predicted MAFLD than the other six existing predictive models. Using this model, the general population with MAFLD can be assessed rapidly.

摘要

背景与目的

代谢相关脂肪性肝病(MAFLD)给所有国家的健康和经济都带来了重大负担。因此,早期识别高危患者并进行适当管理至关重要。本研究旨在建立一种新的 MAFLD 预测模型。此外,为了提高新模型的临床实用性,研究人员将变量限制在易于获得的简单临床和实验室测量指标上。

方法

本研究基于 2017-2020 年美国国家健康和营养调查(NHANES)周期的数据,进行了一项回顾性横断面研究,共纳入了 7300 名参与者。通过最小绝对收缩和选择算子(LASSO)回归,确定了与 MAFLD 独立相关的显著指标,并建立了一个名为 MAFLD 预测列线图(MPN)的预测模型。然后,将该模型与六种现有的 MAFLD 预测模型进行比较。通过测量受试者工作特征曲线下面积(AUC)、净重新分类指数(NRI)、综合判别改善指数(IDI)、校准曲线和决策曲线分析(DCA)曲线来评估模型。

结果

在本研究中,研究人员从 33 个变量中确定了 9 个预测因子,包括年龄、种族、臂围(AC)、腰围(WC)、体重指数(BMI)、丙氨酸氨基转移酶(ALT)/天冬氨酸氨基转移酶(AST)比值、甘油三酯-葡萄糖指数(TyG)、高血压和糖尿病。在训练和验证队列中,MPN 对 MAFLD 的诊断准确性均明显优于其他六种现有模型(AUC 0.868,95%置信区间[CI] 0.858-0.877 和 AUC 0.863,95%CI 0.848-0.878)。MPN 显示出比其他现有模型更高的净获益。

结论

本研究基于人口统计学、实验室因素、人体测量学和合并症建立的非影像学辅助列线图,对 MAFLD 的预测能力优于其他六种现有的预测模型。使用该模型可快速评估 MAFLD 普通人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5311/9730620/36bc23f3b5ad/12944_2022_1748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验