Suppr超能文献

蛋白质过表达可诱导细胞膜纳米域的延伸。

Protein overexpression can induce the elongation of cell membrane nanodomains.

机构信息

Laboratoire de Physique Théorique, Université Toulouse III - Paul Sabatier, CNRS, Toulouse, France.

Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.

出版信息

Biophys J. 2023 Jun 6;122(11):2112-2124. doi: 10.1016/j.bpj.2022.12.009. Epub 2022 Dec 7.

Abstract

In cell membranes, proteins and lipids are organized into submicrometric nanodomains of varying sizes, shapes, and compositions, performing specific functions. Despite their biological importance, the detailed morphology of these nanodomains remains unknown. Not only can they hardly be observed by conventional microscopy due to their small size, but there is no full consensus on the theoretical models to describe their structuring and their shapes. Here, we use a combination of analytical calculations and Monte Carlo simulations based upon a model coupling membrane composition and shape to show that increasing protein concentration leads to an elongation of membrane nanodomains. The results are corroborated by single-particle tracking measurements on HIV receptors, whose level of expression in the membrane of specifically designed living cells can be tuned. These findings highlight that protein abundance can modulate nanodomain shape and potentially their biological function. Beyond biomembranes, this mesopatterning mechanism is of relevance in several soft-matter systems because it relies on generic physical arguments.

摘要

在细胞膜中,蛋白质和脂质组织成具有不同大小、形状和组成的亚微观纳米域,执行特定的功能。尽管它们具有重要的生物学意义,但这些纳米域的详细形态仍然未知。由于它们的体积小,不仅传统显微镜很难观察到它们,而且对于描述它们的结构和形状的理论模型也没有完全达成共识。在这里,我们使用基于结合膜组成和形状的模型的分析计算和蒙特卡罗模拟的组合,表明随着蛋白质浓度的增加,膜纳米域会变长。这些结果得到了针对 HIV 受体的单粒子跟踪测量的证实,HIV 受体在特别设计的活细胞的膜中的表达水平可以进行调节。这些发现强调了蛋白质丰度可以调节纳米域的形状,并可能调节其生物学功能。除了生物膜之外,这种介观图案形成机制在几种软物质系统中也很重要,因为它依赖于通用的物理论据。

相似文献

1
Protein overexpression can induce the elongation of cell membrane nanodomains.
Biophys J. 2023 Jun 6;122(11):2112-2124. doi: 10.1016/j.bpj.2022.12.009. Epub 2022 Dec 7.
4
The cell wall regulates dynamics and size of plasma-membrane nanodomains in .
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12857-12862. doi: 10.1073/pnas.1819077116. Epub 2019 Jun 10.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Membrane Lipid Nanodomains.
Chem Rev. 2018 Dec 12;118(23):11259-11297. doi: 10.1021/acs.chemrev.8b00322. Epub 2018 Oct 26.
7
Nanoscale Membrane Domain Formation Driven by Cholesterol.
Sci Rep. 2017 Apr 25;7(1):1143. doi: 10.1038/s41598-017-01247-9.
8
Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):26-34. doi: 10.1016/j.bbamem.2014.10.007. Epub 2014 Oct 12.
9
Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
J Lipid Res. 2020 May;61(5):758-766. doi: 10.1194/jlr.RA119000565. Epub 2020 Jan 21.
10
Membrane nanodomains in plants: capturing form, function, and movement.
J Exp Bot. 2015 Mar;66(6):1573-86. doi: 10.1093/jxb/erv054. Epub 2015 Feb 27.

引用本文的文献

2
Membranes in focus.
Biophys J. 2023 Jun 6;122(11):E1-E4. doi: 10.1016/j.bpj.2023.05.005. Epub 2023 May 19.

本文引用的文献

1
Zika Virus Exploits Lipid Rafts to Infect Host Cells.
Viruses. 2022 Sep 16;14(9):2059. doi: 10.3390/v14092059.
2
Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis.
PLoS Pathog. 2021 Apr 19;17(4):e1009526. doi: 10.1371/journal.ppat.1009526. eCollection 2021 Apr.
3
Domain formation in bicomponent vesicles induced by composition-curvature coupling.
J Chem Phys. 2020 Jun 28;152(24):244705. doi: 10.1063/5.0006756.
5
Ligand-dependent spatiotemporal signaling profiles of the μ-opioid receptor are controlled by distinct protein-interaction networks.
J Biol Chem. 2019 Nov 1;294(44):16198-16213. doi: 10.1074/jbc.RA119.008685. Epub 2019 Sep 12.
7
The Lateral Organization and Mobility of Plasma Membrane Components.
Cell. 2019 May 2;177(4):806-819. doi: 10.1016/j.cell.2019.04.018.
8
Structural basis of coreceptor recognition by HIV-1 envelope spike.
Nature. 2019 Jan;565(7739):318-323. doi: 10.1038/s41586-018-0804-9. Epub 2018 Dec 12.
9
CCR5 structural plasticity shapes HIV-1 phenotypic properties.
PLoS Pathog. 2018 Dec 6;14(12):e1007432. doi: 10.1371/journal.ppat.1007432. eCollection 2018 Dec.
10
A Rationale for Mesoscopic Domain Formation in Biomembranes.
Biomolecules. 2018 Sep 29;8(4):104. doi: 10.3390/biom8040104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验