Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
College of Science, Huazhong Agricultural University, Wuhan 430070, China.
Int J Mol Sci. 2022 Dec 2;23(23):15221. doi: 10.3390/ijms232315221.
Construction of the tunable oxygen vacancies (OVs) is widely utilized to accelerate molecular oxygen activation for boosting photocatalytic performance. Herein, the in-situ introduction of OVs on BiMoO was accomplished using a calcination treatment in an H/Ar atmosphere. The introduced OVs can not only facilitate carrier separation, but also strengthen the exciton effect, which accelerates singlet oxygen generation through the energy transfer process. Superior carrier separation and abundant singlet oxygen played a crucial role in favoring photocatalytic NaPCP degradation. The optimal BMO-001-300 sample exhibited the fastest NaPCP degradation rate of 0.033 min, about 3.8 times higher than that of the pristine BiMoO. NaPCP was effectively degraded and mineralized mainly through dechlorination, dehydroxylation and benzene ring opening. The present work will shed light on the construction and roles of OVs in semiconductor-based photocatalysis and provide a novel insight into ROS-mediated photocatalytic degradation.
构建可调变的氧空位(OVs)广泛用于加速分子氧的激活,以提高光催化性能。本文通过在 H/Ar 气氛中进行煅烧处理,在 BiMoO 上实现了 OVs 的原位引入。引入的 OVs 不仅可以促进载流子分离,还可以增强激子效应,通过能量转移过程加速单线态氧的生成。优越的载流子分离和丰富的单线态氧有助于促进光催化 NaPCP 的降解。最佳的 BMO-001-300 样品表现出最快的 NaPCP 降解速率,为 0.033 min,比原始的 BiMoO 高约 3.8 倍。NaPCP 主要通过脱氯、脱羟基和苯环开环进行有效降解和矿化。本工作将阐明 OVs 在基于半导体的光催化中的构建和作用,并为 ROS 介导的光催化降解提供新的见解。