Buglak Andrey A, Kapitonova Marina A, Vechtomova Yulia L, Telegina Taisiya A
Faculty of Physics, St. Peterburg State University, 199034 St. Petersburg, Russia.
Institute of Physics, Kazan Federal University, 420008 Kazan, Russia.
Int J Mol Sci. 2022 Dec 3;23(23):15222. doi: 10.3390/ijms232315222.
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of Hpterins since UV provokes electron donor reactions of Hpterins; (2) the emission properties of Hpterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of Hpterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
蝶呤是生物有机体不可或缺的一部分。蝶呤大多以四氢蝶呤的形式参与代谢反应。二氢蝶呤通常是这些反应的中间体,而氧化型蝶呤可作为疾病的生物标志物。在本综述中,我们分析了关于未共轭蝶呤的量子化学及其光子学的现有数据。这能全面概述蝶呤的电子结构,并为生物医学应用提供一些益处:(1)通过对蝶呤进行紫外线照射可以影响芳香族氨基酸羟化酶、一氧化氮合酶和烷基甘油单加氧酶的酶促反应,因为紫外线会引发蝶呤的电子供体反应;(2)蝶呤和氧化型蝶呤的发射特性可用于荧光诊断;(3)在与蝶呤相关的红外治疗中应使用双光子吸收(TPA),因为紫外线范围内的单光子吸收效率低下且在体内会发生散射;(4)通过对蝶呤辅因子(如钼辅因子)进行TPA激发可以影响病原体,导致其从蛋白质上脱离并随后被氧化;(5)金属纳米结构可用于蝶呤生物标志物的紫外可见、荧光和拉曼光谱检测。因此,我们研究了蝶呤的生物化学和物理化学,并提出了一些与蝶呤相关的生物医学潜在前景。