Suppr超能文献

果蝇隐花色素光依赖性识别 Timeless 的机制研究

Mechanistic insight into light-dependent recognition of Timeless by Drosophila Cryptochrome.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Structure. 2022 Jun 2;30(6):851-861.e5. doi: 10.1016/j.str.2022.03.010. Epub 2022 Apr 8.

Abstract

Cryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light. The assay was used to study CRY variants with residue substitutions in the flavin pocket and correlate their TIM affinities with CTT undocking, as measured by pulse-dipolar ESR spectroscopy and evaluated by molecular dynamics simulations. CRY variants with the CTT removed or undocked bound TIM constitutively, whereas those incapable of photoreduction bound TIM weakly. In response to the flavin redox state, two conserved histidine residues contributed to a robust on/off switch by mediating CTT interactions with the flavin pocket and TIM. Our approach provides an expeditious means to quantify the interactions of difficult-to-produce proteins.

摘要

隐花色素 (CRY) 通过与 Timeless (TIM) 结合在光中使果蝇生物钟同步。对 CRY 黄素辅因子的光还原反应导致螺旋 C 端尾部 (CTT) 的脱钩,从而开启 TIM 的识别。我们提出了一种普遍适用的选择性西方印迹法免费标记蛋白相互作用 (SWFTI) 测定法,该方法可用于在黑暗和光照条件下定量测定 CRY 与 TIM 的结合。该测定法用于研究黄素口袋中残基取代的 CRY 变体,并通过脉冲偶极 ESR 光谱法测量其与 CTT 脱钩的相关性,并通过分子动力学模拟进行评估。具有脱钩或去除 CTT 的 CRY 变体与 TIM 持续结合,而那些不能进行光还原的 CRY 变体与 TIM 弱结合。响应黄素的氧化还原状态,两个保守的组氨酸残基通过介导 CTT 与黄素口袋和 TIM 的相互作用,为稳健的开/关开关提供了一种方法。我们的方法为定量测定难以生产的蛋白质的相互作用提供了一种快速手段。

相似文献

2
Changes in active site histidine hydrogen bonding trigger cryptochrome activation.活性位点组氨酸氢键的变化触发隐花色素激活。
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10073-8. doi: 10.1073/pnas.1606610113. Epub 2016 Aug 22.
4
Flavin reduction activates Drosophila cryptochrome.黄素还原激活果蝇隐花色素。
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20455-60. doi: 10.1073/pnas.1313336110. Epub 2013 Dec 2.

引用本文的文献

2
Dynamics and mechanism of DNA repair by a bifunctional cryptochrome.一种双功能隐花色素进行DNA修复的动力学及机制
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417633121. doi: 10.1073/pnas.2417633121. Epub 2024 Dec 2.
4
A structural decryption of cryptochromes.隐花色素的结构解密
Front Chem. 2024 Aug 16;12:1436322. doi: 10.3389/fchem.2024.1436322. eCollection 2024.
10
Room-temperature serial synchrotron crystallography of Drosophila cryptochrome.果蝇隐花色素的室温连续同步辐射晶体学。
Acta Crystallogr D Struct Biol. 2022 Aug 1;78(Pt 8):975-985. doi: 10.1107/S2059798322007008. Epub 2022 Jul 27.

本文引用的文献

3
pH-dependence of signaling-state formation in Drosophila cryptochrome.果蝇隐花色素信号状态形成的 pH 依赖性。
Arch Biochem Biophys. 2021 Mar 30;700:108787. doi: 10.1016/j.abb.2021.108787. Epub 2021 Feb 3.
6
7
Isoform-selective regulation of mammalian cryptochromes.哺乳动物隐花色素的同工型选择性调节。
Nat Chem Biol. 2020 Jun;16(6):676-685. doi: 10.1038/s41589-020-0505-1. Epub 2020 Mar 30.
8
A systematic approach to quantitative Western blot analysis.一种定量 Western blot 分析的系统方法。
Anal Biochem. 2020 Mar 15;593:113608. doi: 10.1016/j.ab.2020.113608. Epub 2020 Jan 31.
9
Cryptochrome: Variations in Blue.隐花色素:蓝色的变化。
J Biol Rhythms. 2020 Feb;35(1):16-27. doi: 10.1177/0748730419878290. Epub 2019 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验