Cifre-Herrando M, Roselló-Márquez G, García-García D M, García-Antón J
Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera s/n, 46022 Valencia, Spain.
Nanomaterials (Basel). 2022 Dec 2;12(23):4286. doi: 10.3390/nano12234286.
In this work, WO nanostructures were synthesized with different complexing agents (0.05 M HO and 0.1 M citric acid) and annealing conditions (400 °C, 500 °C and 600 °C) to obtain optimal WO nanostructures to use them as a photoanode in the photoelectrochemical (PEC) degradation of an endocrine disruptor chemical. These nanostructures were studied morphologically by a field emission scanning electron microscope. X-ray photoelectron spectroscopy was performed to provide information of the electronic states of the nanostructures. The crystallinity of the samples was observed by a confocal Raman laser microscope and X-ray diffraction. Furthermore, photoelectrochemical measurements (photostability, photoelectrochemical impedance spectroscopy, Mott-Schottky and water-splitting test) were also performed using a solar simulator with AM 1.5 conditions at 100 mW·cm. Once the optimal nanostructure was obtained (citric acid 0.01 M at an annealing temperature of 600 °C), the PEC degradation of methylparaben (C 10 ppm) was carried out. It was followed by ultra-high-performance liquid chromatography and mass spectrometry, which allowed to obtain the concentration of the contaminant during degradation and the identification of degradation intermediates. The optimized nanostructure was proved to be an efficient photocatalyst since the degradation of methylparaben was performed in less than 4 h and the kinetic coefficient of degradation was 0.02 min.
在本工作中,采用不同的络合剂(0.05 M 过氧化氢和0.1 M柠檬酸)和退火条件(400 °C、500 °C和600 °C)合成了WO纳米结构,以获得最佳的WO纳米结构,将其用作光阳极用于光催化降解一种内分泌干扰化学物质。通过场发射扫描电子显微镜对这些纳米结构进行了形态学研究。进行了X射线光电子能谱分析,以提供纳米结构电子态的信息。通过共焦拉曼激光显微镜和X射线衍射观察了样品的结晶度。此外,还使用太阳模拟器在AM 1.5条件下、100 mW·cm²进行了光催化测量(光稳定性、光催化阻抗谱、莫特-肖特基和水分解测试)。一旦获得最佳纳米结构(柠檬酸浓度为0.01 M,退火温度为600 °C),就进行了对羟基苯甲酸甲酯(10 ppm)的光催化降解。随后采用超高效液相色谱和质谱分析,从而能够获得降解过程中污染物的浓度并鉴定降解中间体。由于对羟基苯甲酸甲酯在不到4小时内即可降解且降解动力学系数为0.02 min⁻¹,因此证明优化后的纳米结构是一种高效的光催化剂。