Suppr超能文献

基于 ECG 的高效轻量级多模型深度融合在心律失常分类中的应用。

Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification.

机构信息

Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Dec 1;22(23):9347. doi: 10.3390/s22239347.

Abstract

An arrhythmia happens when the electrical signals that organize the heartbeat do not work accurately. Most cases of arrhythmias may increase the risk of stroke or cardiac arrest. As a result, early detection of arrhythmia reduces fatality rates. This research aims to provide a lightweight multimodel based on convolutional neural networks (CNNs) that can transfer knowledge from many lightweight deep learning models and decant it into one model to aid in the diagnosis of arrhythmia by using electrocardiogram (ECG) signals. Thus, we gained a multimodel able to classify arrhythmia from ECG signals. Our system's effectiveness is examined by using a publicly accessible database and a comparison to the current methodologies for arrhythmia classification. The results we achieved by using our multimodel are better than those obtained by using a single model and better than most of the previous detection methods. It is worth mentioning that this model produced accurate classification results on small collection of data. Experts in this field can use this model as a guide to help them make decisions and save time.

摘要

当控制心跳的电信号不能准确工作时,就会发生心律失常。大多数心律失常的病例可能会增加中风或心脏骤停的风险。因此,早期发现心律失常可以降低死亡率。这项研究旨在提供一种基于卷积神经网络 (CNN) 的轻量级多模型,该模型可以从许多轻量级深度学习模型中转移知识,并将其浓缩到一个模型中,通过使用心电图 (ECG) 信号来辅助心律失常的诊断。因此,我们获得了一个能够从心电图信号中分类心律失常的多模型。我们的系统使用公开可用的数据库进行有效性检查,并与目前的心律失常分类方法进行比较。我们使用多模型获得的结果优于使用单个模型获得的结果,也优于大多数以前的检测方法。值得注意的是,该模型在小数据集上产生了准确的分类结果。该领域的专家可以将此模型作为参考,帮助他们做出决策并节省时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c00/9736761/b7d310ff42d8/sensors-22-09347-g001.jpg

相似文献

1
Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification.
Sensors (Basel). 2022 Dec 1;22(23):9347. doi: 10.3390/s22239347.
2
An Improved Convolutional Neural Network Based Approach for Automated Heartbeat Classification.
J Med Syst. 2019 Dec 18;44(2):35. doi: 10.1007/s10916-019-1511-2.
4
Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med. 2018 Nov 1;102:411-420. doi: 10.1016/j.compbiomed.2018.09.009. Epub 2018 Sep 15.
8
A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal.
Sensors (Basel). 2021 Feb 1;21(3):951. doi: 10.3390/s21030951.
9
Constrained transformer network for ECG signal processing and arrhythmia classification.
BMC Med Inform Decis Mak. 2021 Jun 9;21(1):184. doi: 10.1186/s12911-021-01546-2.
10
Patient-Specific Heartbeat Classification in Single-Lead ECG using Convolutional Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:932-936. doi: 10.1109/EMBC46164.2021.9630366.

引用本文的文献

2
Arrhythmia Detection by Data Fusion of ECG Scalograms and Phasograms.
Sensors (Basel). 2024 Dec 17;24(24):8043. doi: 10.3390/s24248043.
4
An Arrhythmia classification approach via deep learning using single-lead ECG without QRS wave detection.
Heliyon. 2024 Feb 29;10(5):e27200. doi: 10.1016/j.heliyon.2024.e27200. eCollection 2024 Mar 15.
5
Accurate Detection of Alzheimer's Disease Using Lightweight Deep Learning Model on MRI Data.
Diagnostics (Basel). 2023 Mar 23;13(7):1216. doi: 10.3390/diagnostics13071216.
6
ECG signal classification in wearable devices based on compressed domain.
PLoS One. 2023 Apr 4;18(4):e0284008. doi: 10.1371/journal.pone.0284008. eCollection 2023.

本文引用的文献

2
Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images.
J King Saud Univ Sci. 2022 Apr;34(3):101898. doi: 10.1016/j.jksus.2022.101898. Epub 2022 Feb 11.
3
Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network.
Comput Biol Med. 2020 Sep;124:103939. doi: 10.1016/j.compbiomed.2020.103939. Epub 2020 Jul 29.
4
Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss.
Comput Biol Med. 2020 Aug;123:103866. doi: 10.1016/j.compbiomed.2020.103866. Epub 2020 Jul 5.
5
Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network.
Comput Methods Programs Biomed. 2020 Nov;196:105607. doi: 10.1016/j.cmpb.2020.105607. Epub 2020 Jun 18.
6
A new approach for arrhythmia classification using deep coded features and LSTM networks.
Comput Methods Programs Biomed. 2019 Jul;176:121-133. doi: 10.1016/j.cmpb.2019.05.004. Epub 2019 May 10.
7
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network.
Sensors (Basel). 2019 Jun 5;19(11):2558. doi: 10.3390/s19112558.
8
Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
Comput Biol Med. 2018 Nov 1;102:411-420. doi: 10.1016/j.compbiomed.2018.09.009. Epub 2018 Sep 15.
9
Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks.
IEEE J Biomed Health Inform. 2019 Jul;23(4):1574-1584. doi: 10.1109/JBHI.2018.2871510. Epub 2018 Sep 20.
10
Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings.
IEEE J Biomed Health Inform. 2018 Nov;22(6):1744-1753. doi: 10.1109/JBHI.2018.2858789. Epub 2018 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验