Suppr超能文献

基于视觉融合 IPS 的 SLAM 后端优化算法。

SLAM Back-End Optimization Algorithm Based on Vision Fusion IPS.

机构信息

School of Information Engineering, Yangzhou University, Yangzhou 225127, China.

Advanced Science and Technology Research Institute, Beibu Gulf University, Qinzhou 535011, China.

出版信息

Sensors (Basel). 2022 Dec 1;22(23):9362. doi: 10.3390/s22239362.

Abstract

SLAM (Simultaneous Localization and Mapping) is mainly composed of five parts: sensor data reading, front-end visual odometry, back-end optimization, loopback detection, and map building. And when visual SLAM is estimated by visual odometry only, cumulative drift will inevitably occur. Loopback detection is used in classical visual SLAM, and if loopback is not detected during operation, it is not possible to correct the positional trajectory using loopback. Therefore, to address the cumulative drift problem of visual SLAM, this paper adds Indoor Positioning System (IPS) to the back-end optimization of visual SLAM, and uses the two-label orientation method to estimate the heading angle of the mobile robot as the pose information, and outputs the pose information with position and heading angle. It is also added to the optimization as an absolute constraint. Global constraints are provided for the optimization of the positional trajectory. We conducted experiments on the AUTOLABOR mobile robot, and the experimental results show that the localization accuracy of the SLAM back-end optimization algorithm with fused IPS can be maintained between 0.02 m and 0.03 m, which meets the requirements of indoor localization, and there is no cumulative drift problem when there is no loopback detection, which solves the problem of cumulative drift of the visual SLAM system to some extent.

摘要

SLAM(同步定位与建图)主要由五个部分组成:传感器数据读取、前端视觉里程计、后端优化、回环检测和地图构建。并且当视觉 SLAM 仅通过视觉里程计进行估计时,必然会出现累积漂移。回环检测用于经典的视觉 SLAM,如果在操作过程中未检测到回环,则无法使用回环来纠正位置轨迹。因此,为了解决视觉 SLAM 的累积漂移问题,本文在视觉 SLAM 的后端优化中添加了室内定位系统 (IPS),并使用双标签定向方法估计移动机器人的航向角作为姿态信息,并将带有位置和航向角的姿态信息输出到优化中作为绝对约束。为位置轨迹的优化提供了全局约束。我们在 AUTOLABOR 移动机器人上进行了实验,实验结果表明,融合 IPS 的 SLAM 后端优化算法的定位精度可以保持在 0.02 m 到 0.03 m 之间,满足室内定位的要求,并且在没有回环检测时没有累积漂移问题,在一定程度上解决了视觉 SLAM 系统的累积漂移问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d5/9739104/a76e12199e9c/sensors-22-09362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验