文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用磁阻抗层析成像研究导体横截面上的电磁特性分布:建模与实验。

The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment.

机构信息

Department of Physics, Pedagogical Institute, Irkutsk State University, 664003 Irkutsk, Russia.

Department of Magnetism and Magnetic Nanomaterials, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.

出版信息

Sensors (Basel). 2022 Dec 5;22(23):9512. doi: 10.3390/s22239512.


DOI:10.3390/s22239512
PMID:36502214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9741072/
Abstract

A description of the method of magnetoimpedance tomography is presented. This method is based on the analysis of the frequency dependences of the impedance obtained in magnetic fields of various strengths. It allows one to determine the distribution of electrical and magnetic properties over the cross-section of the conductor, as well as their dependence on the magnetic field. The article proposes a specific approach to the implementation of the magnetoimpedance tomography method based on computer modeling by the finite element method. The results of this method are presented for composite CuBe/FeCoNi wires of the "highly conductive core-magnetically soft coating" type and amorphous rapidly quenched CoFeNbSiB wires.

摘要

介绍了磁阻抗层析成像方法。该方法基于对不同强度磁场中获得的阻抗频率依赖性的分析。它允许确定导体横截面上的电和磁特性的分布,以及它们对磁场的依赖性。本文提出了一种基于有限元方法的计算机建模实现磁阻抗层析成像方法的具体方法。该方法的结果是针对“高导芯-软磁涂层”型 CuBe/FeCoNi 复合线材和非晶快淬 CoFeNbSiB 线材给出的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/b4d998db60c7/sensors-22-09512-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/00de7261be97/sensors-22-09512-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/708e4304cec7/sensors-22-09512-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/de52bb70e446/sensors-22-09512-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/ec466c3abbaf/sensors-22-09512-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/30261280cef7/sensors-22-09512-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/6eebf4dd1ca6/sensors-22-09512-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/8e8d0b0faa3e/sensors-22-09512-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/fbf47b035bab/sensors-22-09512-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/94010d7fe5f5/sensors-22-09512-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/cc53e4cf8da5/sensors-22-09512-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/b4d998db60c7/sensors-22-09512-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/00de7261be97/sensors-22-09512-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/708e4304cec7/sensors-22-09512-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/de52bb70e446/sensors-22-09512-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/ec466c3abbaf/sensors-22-09512-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/30261280cef7/sensors-22-09512-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/6eebf4dd1ca6/sensors-22-09512-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/8e8d0b0faa3e/sensors-22-09512-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/fbf47b035bab/sensors-22-09512-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/94010d7fe5f5/sensors-22-09512-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/cc53e4cf8da5/sensors-22-09512-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f45d/9741072/b4d998db60c7/sensors-22-09512-g011.jpg

相似文献

[1]
The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment.

Sensors (Basel). 2022-12-5

[2]
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.

Sensors (Basel). 2023-10-7

[3]
Theoretical Study of Microwires with an Inhomogeneous Magnetic Structure Using Magnetoimpedance Tomography.

Sensors (Basel). 2024-6-5

[4]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[5]
Surface modified amorphous ribbon based magnetoimpedance biosensor.

Biosens Bioelectron. 2007-4-15

[6]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

[7]
RF coil optimization: evaluation of B1 field homogeneity using field histograms and finite element calculations.

Magn Reson Imaging. 1994

[8]
Magnetoacoustic tomography with magnetic induction (MAT-MI) for electrical conductivity imaging.

Annu Int Conf IEEE Eng Med Biol Soc. 2009

[9]
Distinguishability for magnetic resonance-electrical impedance tomography (MR-EIT).

Phys Med Biol. 2007-1-21

[10]
Electromagnetic impedance tomography (EMIT): a new method for impedance imaging.

IEEE Trans Med Imaging. 2002-6

引用本文的文献

[1]
Special Issue "Challenges and Future Trends of Magnetic Sensors".

Sensors (Basel). 2025-2-21

[2]
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor.

Sensors (Basel). 2024-7-28

[3]
Theoretical Study of Microwires with an Inhomogeneous Magnetic Structure Using Magnetoimpedance Tomography.

Sensors (Basel). 2024-6-5

[4]
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.

Sensors (Basel). 2023-10-7

本文引用的文献

[1]
A Uniform Magnetic Field Generator Combined with a Thin-Film Magneto-Impedance Sensor Capable of Human Body Scans.

Sensors (Basel). 2022-4-19

[2]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[3]
Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel.

Sensors (Basel). 2021-5-22

[4]
An Indirect Method of Micromagnetic Structure Estimation in Microwires.

Nanomaterials (Basel). 2021-1-21

[5]
Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures.

Materials (Basel). 2020-7-19

[6]
Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application.

Sensors (Basel). 2019-5-29

[7]
Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology.

Sensors (Basel). 2018-3-1

[8]
Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications.

Sensors (Basel). 2017-8-17

[9]
Relating surface roughness and magnetic domain structure to giant magneto-impedance of Co-rich melt-extracted microwires.

Sci Rep. 2017-4-11

[10]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索