文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CoFeCrSiB 薄带的敏感元件的磁阻抗:实验与建模。带有 FeNi 覆盖层的

Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

机构信息

Department of Magnetism and Magnetic Nanomaterials, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.

Laboratory of Advanced Magnetic Materials, Institute of Metal Physics UD RAS, 620108 Ekaterinburg, Russia.

出版信息

Sensors (Basel). 2021 Oct 10;21(20):6728. doi: 10.3390/s21206728.


DOI:10.3390/s21206728
PMID:34695941
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8540889/
Abstract

Soft magnetic materials are widely requested in electronic and biomedical applications. Co-based amorphous ribbons are materials which combine high value of the magnetoimpedance effect (MI), high sensitivity with respect to the applied magnetic field, good corrosion stability in aggressive environments, and reasonably low price. Functional properties of ribbon-based sensitive elements can be modified by deposition of additional magnetic and non-ferromagnetic layers with required conductivity. Such layers can play different roles. In the case of magnetic biosensors for magnetic label detection, they can provide the best conditions for self-assembling processes in biological experiments. In this work, magnetic properties and MI effect were studied for the cases of rapidly quenched CoFeCrSiB amorphous ribbons and magnetic FeNi/CoFeCrSiB/FeNi composites obtained by deposition of FeNi 1 μm thick films onto both sides of the ribbons by magnetron sputtering technique. Their comparative analysis was used for finite element computer simulations of MI responses with different types of magnetic and conductive coatings. The obtained results can be useful for the design of MI sensor development, including MI biosensors for magnetic label detection.

摘要

软磁材料在电子和生物医学应用中需求量很大。基于钴的非晶态带材是一种材料,它结合了高磁阻抗效应(MI)值、对施加磁场的高灵敏度、在腐蚀性环境中的良好耐腐蚀性以及相对较低的价格。基于带材的敏感元件的功能特性可以通过沉积具有所需电导率的附加磁性和非磁性层来进行修改。这些层可以发挥不同的作用。在用于检测磁性标签的磁性生物传感器的情况下,它们可以为生物实验中的自组装过程提供最佳条件。在这项工作中,通过磁控溅射技术在带材的两侧沉积 1 μm 厚的 FeNi 薄膜,研究了快速淬火 CoFeCrSiB 非晶态带材和磁性 FeNi/CoFeCrSiB/FeNi 复合材料的磁性能和 MI 效应。对不同类型的磁性和导电涂层的 MI 响应进行了有限元计算机模拟,并对其进行了比较分析。这些结果可用于 MI 传感器开发的设计,包括用于磁性标签检测的 MI 生物传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/c375970ad9dd/sensors-21-06728-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/fb08f8bee42a/sensors-21-06728-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/aa877f3c18f9/sensors-21-06728-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/c7eb641e8dd2/sensors-21-06728-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/bece71db61e1/sensors-21-06728-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/540554569cad/sensors-21-06728-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/c375970ad9dd/sensors-21-06728-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/fb08f8bee42a/sensors-21-06728-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/aa877f3c18f9/sensors-21-06728-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/c7eb641e8dd2/sensors-21-06728-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/bece71db61e1/sensors-21-06728-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/540554569cad/sensors-21-06728-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5691/8540889/c375970ad9dd/sensors-21-06728-g006.jpg

相似文献

[1]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[2]
Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel.

Sensors (Basel). 2021-5-22

[3]
Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application.

Sensors (Basel). 2019-5-29

[4]
Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements.

Sensors (Basel). 2024-9-29

[5]
Surface modified amorphous ribbon based magnetoimpedance biosensor.

Biosens Bioelectron. 2007-4-15

[6]
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.

Sensors (Basel). 2023-10-7

[7]
Magnetic impedance biosensor: A review.

Biosens Bioelectron. 2016-10-20

[8]
A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings.

Sensors (Basel). 2021-7-29

[9]
The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment.

Sensors (Basel). 2022-12-5

[10]
Magnetic Properties of FeNi/Cu-Based Lithographic Rectangular Multilayered Elements for Magnetoimpedance Applications.

Sensors (Basel). 2023-7-5

引用本文的文献

[1]
Theoretical Study of Microwires with an Inhomogeneous Magnetic Structure Using Magnetoimpedance Tomography.

Sensors (Basel). 2024-6-5

[2]
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.

Sensors (Basel). 2023-10-7

[3]
Longitudinal Spin Seebeck Effect Thermopiles Based on Flexible Co-Rich Amorphous Ribbons/Pt Thin-Film Heterostructures.

Sensors (Basel). 2023-9-10

[4]
Anomalous Nernst Effect in Flexible Co-Based Amorphous Ribbons.

Sensors (Basel). 2023-1-27

[5]
The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment.

Sensors (Basel). 2022-12-5

[6]
Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications.

Materials (Basel). 2022-6-12

本文引用的文献

[1]
Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures.

Materials (Basel). 2020-7-19

[2]
A Guideline for Effectively Synthesizing and Characterizing Magnetic Nanoparticles for Advancing Nanobiotechnology: A Review.

Sensors (Basel). 2020-4-30

[3]
The Performance of the Magneto-Impedance Effect for the Detection of Superparamagnetic Particles.

Sensors (Basel). 2020-3-31

[4]
Comparison of Stress-Impedance Effect in Amorphous Ribbons with Positive and Negative Magnetostriction.

Materials (Basel). 2019-1-16

[5]
A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein.

Sensors (Basel). 2018-6-1

[6]
Surface modified amorphous ribbon based magnetoimpedance biosensor.

Biosens Bioelectron. 2007-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索