Suppr超能文献

基于IGERNNC算法的多模态数据融合用于检测阿尔茨海默病中的致病性脑区和基因。

Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer's disease.

作者信息

Wang Shuaiqun, Zheng Kai, Kong Wei, Huang Ruiwen, Liu Lulu, Wen Gen, Yu Yaling

机构信息

School of Information Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Brief Bioinform. 2023 Jan 19;24(1). doi: 10.1093/bib/bbac515.

Abstract

At present, the study on the pathogenesis of Alzheimer's disease (AD) by multimodal data fusion analysis has been attracted wide attention. It often has the problems of small sample size and high dimension with the multimodal medical data. In view of the characteristics of multimodal medical data, the existing genetic evolution random neural network cluster (GERNNC) model combine genetic evolution algorithm and neural network for the classification of AD patients and the extraction of pathogenic factors. However, the model does not take into account the non-linear relationship between brain regions and genes and the problem that the genetic evolution algorithm can fall into local optimal solutions, which leads to the overall performance of the model is not satisfactory. In order to solve the above two problems, this paper made some improvements on the construction of fusion features and genetic evolution algorithm in GERNNC model, and proposed an improved genetic evolution random neural network cluster (IGERNNC) model. The IGERNNC model uses mutual information correlation analysis method to combine resting-state functional magnetic resonance imaging data with single nucleotide polymorphism data for the construction of fusion features. Based on the traditional genetic evolution algorithm, elite retention strategy and large variation genetic algorithm are added to avoid the model falling into the local optimal solution. Through multiple independent experimental comparisons, the IGERNNC model can more effectively identify AD patients and extract relevant pathogenic factors, which is expected to become an effective tool in the field of AD research.

摘要

目前,通过多模态数据融合分析对阿尔茨海默病(AD)发病机制的研究已引起广泛关注。多模态医学数据常常存在样本量小和维度高的问题。针对多模态医学数据的特点,现有的遗传进化随机神经网络聚类(GERNNC)模型将遗传进化算法与神经网络相结合,用于AD患者的分类和致病因素的提取。然而,该模型没有考虑脑区与基因之间的非线性关系以及遗传进化算法可能陷入局部最优解的问题,导致模型的整体性能不尽人意。为了解决上述两个问题,本文对GERNNC模型中的融合特征构建和遗传进化算法进行了一些改进,提出了一种改进的遗传进化随机神经网络聚类(IGERNNC)模型。IGERNNC模型采用互信息相关分析方法,将静息态功能磁共振成像数据与单核苷酸多态性数据相结合来构建融合特征。在传统遗传进化算法的基础上,增加了精英保留策略和大变异遗传算法,以避免模型陷入局部最优解。通过多次独立实验比较,IGERNNC模型能够更有效地识别AD患者并提取相关致病因素,有望成为AD研究领域的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验