Suppr超能文献

基于新型非线性相关分析算法探索阿尔茨海默病的影像遗传标志物。

Exploring Imaging Genetic Markers of Alzheimer's Disease Based on a Novel Nonlinear Correlation Analysis Algorithm.

机构信息

College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China.

Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.

出版信息

J Mol Neurosci. 2024 Apr 3;74(2):35. doi: 10.1007/s12031-024-02190-x.

Abstract

Alzheimer's disease (AD) is an irreversible neurological disorder characterized by insidious onset. Identifying potential markers in its emergence and progression is crucial for early diagnosis and treatment. Imaging genetics typically merges genetic variables with multiple imaging parameters, employing various association analysis algorithms to investigate the links between pathological phenotypes and genetic variations, and to unearth molecular-level insights from brain images. However, most existing imaging genetics algorithms based on sparse learning assume a linear relationship between genetic factors and brain functions, limiting their ability to discern complex nonlinear correlation patterns and resulting in reduced accuracy. To address these issues, we propose a novel nonlinear imaging genetic association analysis method, Deep Self-Reconstruction-based Adaptive Sparse Multi-view Deep Generalized Canonical Correlation Analysis (DSR-AdaSMDGCCA). This approach facilitates joint learning of the nonlinear relationships between pathological phenotypes and genetic variations by integrating three different types of data: structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism (SNP), and gene expression data. By incorporating nonlinear transformations in DGCCA, our model effectively uncovers nonlinear associations across multiple data types. Additionally, the DSR algorithm clusters samples with identical labels, incorporating label information into the nonlinear feature extraction process and thus enhancing the performance of association analysis. The application of the DSR-AdaSMDGCCA algorithm on real data sets identified several AD risk regions (such as the hippocampus, parahippocampus, and fusiform gyrus) and risk genes (including VSIG4, NEDD4L, and PINK1), achieving maximum classification accuracy with the fewest selected features compared to baseline algorithms. Molecular biology enrichment analysis revealed that the pathways enriched by these top genes are intimately linked to AD progression, affirming that our algorithm not only improves correlation analysis performance but also identifies biologically significant markers.

摘要

阿尔茨海默病(AD)是一种不可逆的神经退行性疾病,其发病隐匿。确定其发生和进展的潜在标志物对于早期诊断和治疗至关重要。影像遗传学通常将遗传变量与多个影像参数相结合,采用各种关联分析算法来研究病理表型和遗传变异之间的联系,并从脑影像中揭示分子水平的见解。然而,大多数基于稀疏学习的现有影像遗传学算法假设遗传因素与大脑功能之间存在线性关系,限制了其识别复杂非线性相关模式的能力,并导致准确性降低。为了解决这些问题,我们提出了一种新的基于深度学习的自适应稀疏多视图深度广义典型相关分析(DSR-AdaSMDGCCA)的非线性影像遗传学关联分析方法。该方法通过整合三种不同类型的数据(结构磁共振成像(sMRI)、单核苷酸多态性(SNP)和基因表达数据),促进病理表型和遗传变异之间的非线性关系的联合学习。通过在 DGCCA 中加入非线性变换,我们的模型有效地揭示了多种数据类型之间的非线性关联。此外,DSR 算法将具有相同标签的样本聚类,将标签信息纳入非线性特征提取过程中,从而提高关联分析的性能。在真实数据集上应用 DSR-AdaSMDGCCA 算法,确定了几个 AD 风险区域(如海马体、海马旁回和梭状回)和风险基因(包括 VSIG4、NEDD4L 和 PINK1),与基线算法相比,使用最少的选定特征实现了最大的分类准确性。分子生物学富集分析表明,这些顶级基因富集的通路与 AD 进展密切相关,这证实了我们的算法不仅提高了相关分析的性能,而且还确定了具有生物学意义的标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验