Buccellato Andrea, Zang Di, Zilio Federico, Gomez-Pilar Javier, Wang Zhe, Qi Zengxin, Zheng Ruizhe, Xu Zeyu, Wu Xuehai, Bisiacchi Patrizia, Del Felice Alessandra, Mao Ying, Northoff Georg
Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy.
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
Neuroimage. 2023 Jan;265:119802. doi: 10.1016/j.neuroimage.2022.119802. Epub 2022 Dec 9.
Our brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain's capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial alignment to the environment's temporal input stochastics, through relating different neural timescales, as one key predisposing factor of consciousness.
我们的大脑处理着环境中时间输入随机性的不同时间尺度。这样一种时间输入处理机制对于意识来说是关键的吗?为了解决这个研究问题,我们在静息态高密度脑电图(256个通道)记录上,计算了较短时间尺度(阿尔法峰值频率,APF)和较长时间尺度(自相关窗口,ACW)上的输入处理指标,并在不同意识水平(清醒/有意识、氯胺酮和七氟醚麻醉、无反应觉醒、最低意识状态)之间进行了比较。我们重复并扩展了之前的研究结果:(i)使用ACW-0(一种前所未有的更长版本的知名ACW-50)测量,在所有无意识状态下,ACW值显著更长;(ii)在所有四种无意识状态下,使用频率滑动测量,APF值显著更慢。最重要的是,我们报告了在有意识状态下ACW-0和APF之间存在高度显著的相关性,而在无意识状态下它们的关系被破坏。总之,我们证明了大脑在较短(APF)和较长(ACW)时间尺度上进行输入处理的能力——包括它们之间的关系——对于意识的相关性。尽管是间接的,例如通过对静息态电生理活动的分析,但这支持了通过关联不同的神经时间尺度,与环境的时间输入随机性进行时空对齐的机制,作为意识的一个关键 predisposing 因素。 (注:“predisposing”在医学语境中可能有“预先存在的、易患的”等意思,这里根据语境灵活处理为“ predisposing 因素”,以便更通顺,但可能在某些医学专业理解中还需进一步斟酌其确切含义。)