Suppr超能文献

用信息论启发的方法探究脑电图中的内在神经时间尺度:排列熵时间延迟估计(PE-TD)

Probing Intrinsic Neural Timescales in EEG with an Information-Theory Inspired Approach: Permutation Entropy Time Delay Estimation (PE-TD).

作者信息

Buccellato Andrea, Çatal Yasir, Bisiacchi Patrizia, Zang Di, Zilio Federico, Wang Zhe, Qi Zengxin, Zheng Ruizhe, Xu Zeyu, Wu Xuehai, Del Felice Alessandra, Mao Ying, Northoff Georg

机构信息

Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy.

Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy.

出版信息

Entropy (Basel). 2023 Jul 19;25(7):1086. doi: 10.3390/e25071086.

Abstract

Time delays are a signature of many physical systems, including the brain, and considerably shape their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-spatial theory of consciousness (TTC). However, they are often not known a priori and need to be estimated from time series. In this study, we propose the use of permutation entropy (PE) to estimate time delays from neural time series as a more robust alternative to the widely used autocorrelation window (ACW). In the first part, we demonstrate the validity of this approach on synthetic neural data, and we show its resistance to regimes of nonstationarity in time series. Mirroring yet another example of comparable behavior between different nonlinear systems, permutation entropy-time delay estimation (PE-TD) is also able to measure intrinsic neural timescales (INTs) (temporal windows of neural activity at rest) from hd-EEG human data; additionally, this replication extends to the abnormal prolongation of INT values in disorders of consciousness (DoCs). Surprisingly, the correlation between ACW-0 and PE-TD decreases in a state-dependent manner when consciousness is lost, hinting at potential different regimes of nonstationarity and nonlinearity in conscious/unconscious states, consistent with many current theoretical frameworks on consciousness. In summary, we demonstrate the validity of PE-TD as a tool to extract relevant time scales from neural data; furthermore, given the divergence between ACW and PE-TD specific to DoC subjects, we hint at its potential use for the characterization of conscious states.

摘要

时间延迟是包括大脑在内的许多物理系统的一个特征,并在很大程度上塑造了它们的动态特性;此外,正如意识的时空理论(TTC)所假设的那样,它们在意识中起着关键作用。然而,它们通常事先并不为人所知,需要从时间序列中进行估计。在本研究中,我们建议使用排列熵(PE)从神经时间序列中估计时间延迟,作为广泛使用的自相关窗口(ACW)的一种更稳健的替代方法。在第一部分,我们在合成神经数据上证明了这种方法的有效性,并展示了它对时间序列非平稳性状态的抗性。与不同非线性系统之间类似行为的另一个例子类似,排列熵 - 时间延迟估计(PE - TD)也能够从高清脑电图(hd - EEG)人类数据中测量内在神经时间尺度(INTs)(静息时神经活动的时间窗口);此外,这种重复性扩展到意识障碍(DoCs)中INT值的异常延长。令人惊讶的是,当意识丧失时,ACW - 0与PE - TD之间的相关性以状态依赖的方式降低,这暗示了意识/无意识状态中潜在的不同非平稳性和非线性状态,这与许多当前关于意识的理论框架一致。总之,我们证明了PE - TD作为从神经数据中提取相关时间尺度的工具的有效性;此外,鉴于ACW和PE - TD在DoC受试者中的差异,我们暗示了它在表征意识状态方面的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef6d/10378026/9a793a8b0b42/entropy-25-01086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验