基于显微镜图像的脂肪细胞分化机器学习分类
Microscopic image-based classification of adipocyte differentiation by machine learning.
作者信息
Noguchi Yoshiyuki, Murakami Masataka, Murata Masayuki, Kano Fumi
机构信息
International Research Center for Neurointelligence, Institutes for Advanced Study, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan.
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
出版信息
Histochem Cell Biol. 2023 Apr;159(4):313-327. doi: 10.1007/s00418-022-02168-z. Epub 2022 Dec 11.
Adipocyte differentiation is a sequential process involving increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), adipocyte-specific gene expression, and accumulation of lipid droplets in the cytoplasm. Expression of the transcription factors involved is usually detected using canonical biochemical or biomolecular procedures such as Western blotting or qPCR of pooled cell lysates. While this provides a useful average index for adipogenesis for some populations, the precise stage of adipogenesis cannot be distinguished at the single-cell level, because the heterogenous nature of differentiation among cells limits the utility of averaged data. We have created a classifier to sort cells, and used it to determine the stage of adipocyte differentiation at the single-cell level. We used a machine learning method with microscopic images of cell stained for PPARγ and lipid droplets as input data. Our results show that the classifier can successfully determine the precise stage of differentiation. Stage classification and subsequent model fitting using the sequential reaction model revealed the action of pioglitazone and rosiglitazone to be promotion of transition from the stage of increased PPARγ expression to the next stage. This indicates that these drugs are PPARγ agonists, and that our classifier and model can accurately estimate drug action points and would be suitable for evaluating the stage/state of individual cells during differentiation or disease progression. The incorporation of both biochemical and morphological information derived from immunofluorescence image of cells and so overcomes limitations of current models.
脂肪细胞分化是一个连续的过程,涉及过氧化物酶体增殖物激活受体γ(PPARγ)表达增加、脂肪细胞特异性基因表达以及细胞质中脂滴的积累。所涉及的转录因子的表达通常使用经典的生化或生物分子程序来检测,如对汇集的细胞裂解物进行蛋白质印迹或定量聚合酶链反应。虽然这为某些群体的脂肪生成提供了一个有用的平均指标,但由于细胞间分化的异质性限制了平均数据的实用性,在单细胞水平上无法区分脂肪生成的精确阶段。我们创建了一个用于分选细胞的分类器,并使用它来确定单细胞水平上脂肪细胞分化的阶段。我们使用一种机器学习方法,将针对PPARγ和脂滴染色的细胞显微图像作为输入数据。我们的结果表明,该分类器能够成功确定分化的精确阶段。使用顺序反应模型进行阶段分类和随后的模型拟合显示,吡格列酮和罗格列酮的作用是促进从PPARγ表达增加阶段向下一阶段的转变。这表明这些药物是PPARγ激动剂,并且我们的分类器和模型能够准确估计药物作用点,适用于评估分化或疾病进展过程中单个细胞的阶段/状态。结合从细胞免疫荧光图像中获得的生化和形态学信息,从而克服了当前模型的局限性。