Suppr超能文献

基于超晶格的等离子体催化:在纳米尺度上聚焦光以在环境条件下驱动高效的氮固定为氨反应。

Superlattice-based Plasmonic Catalysis: Concentrating Light at the Nanoscale to Drive Efficient Nitrogen-to-Ammonia Fixation at Ambient Conditions.

作者信息

Boong Siew Kheng, Chong Carice, Lee Jinn-Kye, Ang Zhi Zhong, Li Haitao, Lee Hiang Kwee

机构信息

Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202216562. doi: 10.1002/anie.202216562. Epub 2023 Jan 11.

Abstract

Plasmonic catalysis promises green ammonia synthesis but is limited by the need for co-catalysts and poor performances due to weak electromagnetic field enhancement. Here, we use two-dimensional plasmonic superlattices with dense electromagnetic hotspots to boost ambient nitrogen-to-ammonia photoconversion without needing co-catalyst. By organizing Ag octahedra into a square superlattice to concentrate light, the ammonia formation is enhanced by ≈15-fold and 4-fold over hexagonal superlattice and disorganized array, respectively. Our unique catalyst achieves superior ammonia formation rate and apparent quantum yield up to ≈15-fold and ≈10 -fold, respectively, better than traditional designs. Mechanistic investigations reveal the abundance of intense plasmonic hotspots is crucial to promote hot electron generation and transfer for nitrogen reduction. Our work offers valuable insights to design electromagnetically hot plasmonic catalysts for diverse chemical and energy applications.

摘要

表面等离子体催化有望实现绿色氨合成,但由于需要助催化剂以及电磁场增强较弱导致性能不佳而受到限制。在此,我们使用具有密集电磁热点的二维等离子体超晶格来促进常温下氮到氨的光转化,而无需助催化剂。通过将银八面体组织成方形超晶格以集中光,氨的生成量分别比六边形超晶格和无序阵列提高了约15倍和4倍。我们独特的催化剂实现了卓越的氨生成速率和表观量子产率,分别比传统设计高出约15倍和约10倍。机理研究表明,丰富的强表面等离子体热点对于促进热电子的产生和转移以实现氮还原至关重要。我们的工作为设计用于各种化学和能源应用的电磁热点等离子体催化剂提供了有价值的见解。

相似文献

7
Plasmon-Driven Catalysis on Molecules and Nanomaterials.分子与纳米材料上的等离激元驱动催化
Acc Chem Res. 2019 Sep 17;52(9):2506-2515. doi: 10.1021/acs.accounts.9b00224. Epub 2019 Aug 19.
9
Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves.驻波热载流子引发的表面等离子体腔催化
J Am Chem Soc. 2023 Aug 30;145(34):18912-18919. doi: 10.1021/jacs.3c05392. Epub 2023 Aug 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验