Suppr超能文献

基于 ROC 分析比较中国成年人中 10 种肥胖相关指标预测高血压的价值。

Comparison of 10 obesity-related indices for predicting hypertension based on ROC analysis in Chinese adults.

机构信息

Faculty of Sports Science, Ningbo University, Ningbo, China.

Research Academy of Grand Health, Ningbo University, Ningbo, China.

出版信息

Front Public Health. 2022 Nov 25;10:1042236. doi: 10.3389/fpubh.2022.1042236. eCollection 2022.

Abstract

OBJECTIVE

To compare the predictive performance of the percentage body fat (PBF), body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), waist-height ratio (WHtR), a body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), and conicity index (CI) for identifying hypertension.

METHODS

A cross-sectional study was conducted among 2,801 adults (1,499 men and 1,302 women) aged 18 to 81 in Ningbo, China. The receiver operator characteristic (ROC) analysis and multiple non-parametric Z tests were used to compare the areas under the curve (AUC). The maximum Youden's indices were used to determine the optimal cut-off points of 10 obesity-related indices (ORI) for hypertension risk.

RESULTS

The AUC of all the indices were statistically significant ( < 0.05). The AUC of all the indices in men and women were 0.67-0.73 and 0.72-0.79, respectively. Further non-parametric Z tests showed that WHR had the highest AUC values in both men [0.73 (95% CI: 0.70, 0.76)] and women (0.79 (95% CI: 0.75, 0.83)], and several central ORI (men: WHR, WC, BRI, AVI, and CI, 0.71-0.73; women: WC, WHR, and AVI, 0.77-0.79) were higher than general ORI (PBF and BMI, 0.68 in men; 0.72-0.75 in women), with adjusted < 0.05. The optimal cut-off points for identifying hypertension in men and women were as follows: PBF (23.55%, 32.55%), BMI (25.72 kg/m, 23.46 kg/m), HC (97.59 cm, 94.82 cm), WC (90.26 cm, 82.78 cm), WHR (0.91, 0.88), WHtR (0.51, 0.55), ABSI (0.08 m/kg, 0.08 m/kg), BRI (4.05, 4.32), AVI (16.31 cm, 13.83 cm), and CI (1.23 m/kg, 1.27 m/kg). Multivariate logistic regression models showed that all indices were statistically significant ( < 0.05) with the adjusted ORs (per 1-SD increase) at 1.39-2.06 and ORs (over the optimal cut-off points) at 1.80-2.64.

CONCLUSIONS

All 10 ORI (PBF, BMI, HC, WC, WHR, WHtR, ABSI, BRI, AVI, and CI) can effectively predict hypertension, among which WHR should be recommended as the best predictor. Central ORI (WHR, WC, and AVI) had a better predictive performance than general ORIs (PBF and BMI) when predicting the risk of hypertension.

摘要

目的

比较体脂百分比(PBF)、体重指数(BMI)、腰围(WC)、臀围(HC)、腰臀比(WHR)、腰高比(WHtR)、身体形状指数(ABSI)、身体圆润指数(BRI)、腹部容量指数(AVI)和锥度指数(CI)在识别高血压方面的预测性能。

方法

在中国宁波,进行了一项横断面研究,共纳入 2801 名 18 至 81 岁的成年人(男性 1499 人,女性 1302 人)。采用受试者工作特征(ROC)分析和多个非参数 Z 检验比较曲线下面积(AUC)。使用最大 Youden 指数确定 10 种肥胖相关指数(ORI)用于高血压风险的最佳截断点。

结果

所有指数的 AUC 均具有统计学意义(<0.05)。所有指数在男性和女性中的 AUC 值分别为 0.67-0.73 和 0.72-0.79。进一步的非参数 Z 检验表明,WHR 在男性(0.73(95%CI:0.70,0.76))和女性(0.79(95%CI:0.75,0.83))中具有最高的 AUC 值,并且几个中心 ORI(男性:WHR、WC、BRI、AVI 和 CI,0.71-0.73;女性:WC、WHR 和 AVI,0.77-0.79)高于一般 ORI(男性:PBF 和 BMI,0.68;女性:0.72-0.75),调整后 P<0.05。男性和女性识别高血压的最佳截断点如下:PBF(23.55%,32.55%)、BMI(25.72kg/m,23.46kg/m)、HC(97.59cm,94.82cm)、WC(90.26cm,82.78cm)、WHR(0.91,0.88)、WHtR(0.51,0.55)、ABSI(0.08m/kg,0.08m/kg)、BRI(4.05,4.32)、AVI(16.31cm,13.83cm)和 CI(1.23m/kg,1.27m/kg)。多变量逻辑回归模型表明,所有指数均具有统计学意义(<0.05),调整后的比值比(OR)(每 1-SD 增加)为 1.39-2.06,OR(超过最佳截断点)为 1.80-2.64。

结论

所有 10 种 ORI(PBF、BMI、HC、WC、WHR、WHtR、ABSI、BRI、AVI 和 CI)均可有效预测高血压,其中 WHR 应被推荐为最佳预测指标。中心 ORI(WHR、WC 和 AVI)在预测高血压风险方面的预测性能优于一般 ORIs(PBF 和 BMI)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f086/9732655/0a5b240c083d/fpubh-10-1042236-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验