Suppr超能文献

膀胱癌患者 anoikis 相关长非编码 RNA 免疫浸润的综合分析与免疫治疗。

Comprehensive analysis of anoikis-related long non-coding RNA immune infiltration in patients with bladder cancer and immunotherapy.

机构信息

Department of Urology, The General Hospital of Western Theater Command, Chengdu, China.

Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.

出版信息

Front Immunol. 2022 Nov 25;13:1055304. doi: 10.3389/fimmu.2022.1055304. eCollection 2022.

Abstract

BACKGROUND

Anoikis is a form of programmed cell death or programmed cell death(PCD) for short. Studies suggest that anoikis involves in the decisive steps of tumor progression and cancer cell metastasis and spread, but what part it plays in bladder cancer remains unclear. We sought to screen for anoikis-correlated long non-coding RNA (lncRNA) so that we can build a risk model to understand its ability to predict bladder cancer prognosis and the immune landscape.

METHODS

We screened seven anoikis-related lncRNAs (arlncRNAs) from The Cancer Genome Atlas (TCGA) and designed a risk model. It was validated through ROC curves and clinicopathological correlation analysis, and demonstrated to be an independent factor of prognosis prediction by uni- and multi-COX regression. In the meantime, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, and half-maximal inhibitory concentration prediction (IC50) were implemented with the model. Moreover, we divided bladder cancer patients into three subtypes by consensus clustering analysis to further study the differences in prognosis, immune infiltration level, immune checkpoints, and drug susceptibility.

RESULT

We designed a risk model of seven arlncRNAs, and proved its accuracy using ROC curves. COX regression indicated that the model might be an independent prediction factor of bladder cancer prognosis. KEGG enrichment analysis showed it was enriched in tumors and immune-related pathways among the people at high risk. Immune correlation analysis and drug susceptibility results indicated that it had higher immune infiltration and might have a better immunotherapy efficacy for high-risk groups. Of the three subtypes classified by consensus clustering analysis, cluster 3 revealed a positive prognosis, and cluster 2 showed the highest level of immune infiltration and was sensitive to most chemistries. This is helpful for us to discover more precise immunotherapy for bladder cancer patients.

CONCLUSION

In a nutshell, we found seven arlncRNAs and built a risk model that can identify different bladder cancer subtypes and predict the prognosis of bladder cancer patients. Immune-related and drug sensitivity researches demonstrate it can provide individual therapeutic schedule with greater precision for bladder cancer patients.

摘要

背景

细胞凋亡是一种程序性细胞死亡或简称细胞程序性死亡。研究表明,细胞凋亡涉及肿瘤进展和癌细胞转移和扩散的关键步骤,但它在膀胱癌中所起的作用尚不清楚。我们试图筛选与细胞凋亡相关的长链非编码 RNA(lncRNA),以便构建一个风险模型,了解其预测膀胱癌预后和免疫景观的能力。

方法

我们从癌症基因组图谱(TCGA)中筛选了七种与细胞凋亡相关的长链非编码 RNA(arlncRNA),并设计了一个风险模型。通过 ROC 曲线和临床病理相关性分析进行验证,并通过单因素和多因素 COX 回归分析证明其是预后预测的独立因素。同时,利用模型进行京都基因与基因组百科全书(KEGG)富集分析、免疫浸润和半数最大抑制浓度预测(IC50)。此外,我们通过共识聚类分析将膀胱癌患者分为三个亚组,以进一步研究预后、免疫浸润水平、免疫检查点和药物敏感性的差异。

结果

我们设计了一个由七种 arlncRNA 组成的风险模型,并通过 ROC 曲线证明了其准确性。COX 回归分析表明,该模型可能是膀胱癌预后的独立预测因素。KEGG 富集分析表明,它在高危人群中富集在肿瘤和免疫相关途径中。免疫相关性分析和药物敏感性结果表明,它具有更高的免疫浸润度,对高危组可能具有更好的免疫治疗效果。通过共识聚类分析分类的三个亚组中,亚组 3 显示出阳性预后,亚组 2 显示出最高的免疫浸润水平,对大多数化疗药物敏感。这有助于我们为膀胱癌患者发现更精确的免疫治疗方法。

结论

总之,我们发现了七种 arlncRNA,并构建了一个风险模型,可以识别不同的膀胱癌亚型,并预测膀胱癌患者的预后。免疫相关和药物敏感性研究表明,它可以为膀胱癌患者提供更精确的个体化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b0/9732092/685a33538917/fimmu-13-1055304-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验