Anderson Matt D, Elder James H, Graf Erich W, Adams Wendy J
Centre for Perception and Cognition, Psychology, University of Southampton, Southampton, UK.
Centre for Vision Research, Department of Psychology, Department of Electrical Engineering and Computer Science, York University, Toronto, Canada.
iScience. 2022 Nov 19;25(12):105633. doi: 10.1016/j.isci.2022.105633. eCollection 2022 Dec 22.
Real-world scene perception unfolds remarkably quickly, yet the underlying visual processes are poorly understood. Space-centered theory maintains that a scene's spatial structure (e.g., openness, mean depth) can be rapidly recovered from low-level image statistics. In turn, the statistical relationship between a scene's spatial properties and semantic content allows for semantic identity to be inferred from its layout. We tested this theory by investigating (1) the temporal dynamics of spatial and semantic perception in real-world scenes, and (2) dependencies between spatial and semantic judgments. Participants viewed backward-masked images for 13.3 to 106.7 ms, and identified the semantic (e.g., beach, road) or spatial structure (e.g., open, closed-off) category. We found no temporal precedence of spatial discrimination relative to semantic discrimination. Computational analyses further suggest that, instead of using spatial layout to infer semantic categories, humans exploit semantic information to discriminate spatial structure categories. These findings challenge traditional 'bottom-up' views of scene perception.
现实世界场景感知展开得非常迅速,但人们对其背后的视觉过程却知之甚少。以空间为中心的理论认为,场景的空间结构(例如开放性、平均深度)可以从低层次图像统计数据中快速恢复。反过来,场景空间属性与语义内容之间的统计关系使得可以从其布局推断出语义特征。我们通过研究(1)现实世界场景中空间和语义感知的时间动态,以及(2)空间和语义判断之间的依赖性来检验这一理论。参与者观看后向掩蔽图像13.3至106.7毫秒,并识别语义(例如海滩、道路)或空间结构(例如开放、封闭)类别。我们发现相对于语义辨别,空间辨别不存在时间上的优先性。计算分析进一步表明,人类不是利用空间布局来推断语义类别,而是利用语义信息来辨别空间结构类别。这些发现挑战了传统的场景感知“自下而上”观点。