Suppr超能文献

决策变量相关性

Decision-variable correlation.

作者信息

Sebastian Stephen, Geisler Wilson S

机构信息

Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, TX, USA.

出版信息

J Vis. 2018 Apr 1;18(4):3. doi: 10.1167/18.4.3.

Abstract

An extension of the signal-detection theory framework is described and demonstrated for two-alternative identification tasks. The extended framework assumes that the subject and an arbitrary model (or two subjects, or the same subject on two occasions) are performing the same task with the same stimuli, and that on each trial they both compute values of a decision variable. Thus, their joint performance is described by six fundamental quantities: two levels of intrinsic discriminability (d'), two values of decision criterion, and two decision-variable correlations (DVCs), one for each of the two categories of stimuli. The framework should be widely applicable for testing models and characterizing individual differences in behavioral and neurophysiological studies of perception and cognition. We demonstrate the framework for the well-known task of detecting a Gaussian target in white noise. We find that (a) subjects' DVCs are approximately equal to the square root of their efficiency relative to ideal (in agreement with the prediction of a popular class of models), (b) between-subjects and within-subject (double-pass) DVCs increase with target contrast and are greater for target-present than target-absent trials (rejecting many models),

摘要

本文描述并展示了信号检测理论框架在二选一识别任务中的一种扩展。扩展框架假设被试与一个任意模型(或两个被试,或同一被试在两种情况下)使用相同的刺激执行相同的任务,并且在每次试验中他们都计算一个决策变量的值。因此,他们的联合表现由六个基本量来描述:两种内在辨别力水平(d')、两个决策标准值以及两个决策变量相关性(DVC),每种刺激类别各一个。该框架应广泛适用于测试模型以及在感知和认知的行为和神经生理学研究中刻画个体差异。我们针对在白噪声中检测高斯目标这一著名任务展示了该框架。我们发现:(a)被试的DVC大致等于其相对于理想情况的效率的平方根(与一类流行模型的预测一致);(b)被试间和被试内(双程)DVC随目标对比度增加,且目标出现试验中的DVC大于目标未出现试验中的DVC(排除了许多模型)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faf2/5885773/f55009ee6f1f/i1534-7362-18-4-3-f02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验