Cruz-Cosme Ruth, Zhang Jiantao, Liu Dongxiao, Mahase Vidhyanand, Sallapalli Bhargava Teja, Chang Peixi, Zhang Yanjin, Teng Shaolei, Zhao Richard Y, Tang Qiyi
Department of Microbiology, Howard University College of Medicine, Washington, DC, United States.
Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.
Front Cell Dev Biol. 2022 Nov 23;10:1011221. doi: 10.3389/fcell.2022.1011221. eCollection 2022.
The ongoing SARS-CoV-2/COVID-19 pandemic caused a global public health crisis. Yet, everyone's response to SARS-CoV-2 infection varies, and different viral variants confer diverse pathogenicity. Thus, it is imperative to understand how viral determinants contribute to COVID-19. Viral ORF3a protein is one of those viral determinants, as its functions are linked to induction of cell and tissues damages, disease severity and cytokine storm that is a major cause of COVID-19-related death. ORF3a is a membrane-associated protein. Upon synthesis, it is transported from endoplasmic reticulum, Golgi apparatus to plasma membrane and subcellular endomembranes including endosomes and lysosomes. However, how ORF3a is transported intracellularly remains elusive. The goal of this study was to carry out a systematic mutagenesis study to determine the structural relationship of ORF3a protein with its subcellular locations. Single amino acid (aa) and deletion mutations were generated in the putative function-relevant motifs and other regions of interest. Immunofluorescence and ImageJ analyses were used to determine and quantitate subcellular locations of ORF3a mutants in comparison with wildtype ORF3a. The wildtype ORF3a localizes predominantly (Pearson's coefficients about 0.8) on the membranes of endosomes and lysosomes. Consistent with earlier findings, deletion of the YXXΦ motif, which is required for protein export, retained ORF3a in the Golgi apparatus. Interestingly, mutations in a double glycine (diG) region (aa 187-188) displayed a similar phenotype to the YXXΦ deletion, implicating a similar role of the diG motif in intracellular transport. Indeed, interrupting any one of the two glycine residues such as deletion of a single (dG188), both (dG187/dG188) or substitution (G188Y) of these residues led to ORF3a retention in the Golgi apparatus (Pearson's coefficients ≥0.8). Structural analyses further suggest that the diG motif supports a type-II β-turn between the anti-parallel β4 and β5 sheets and connects to the YXXΦ motif hydrogen bonds between two monomers. The diG- YXXΦ interaction forms a hand-in-hand configuration that could facilitate dimerization. Together, these observations suggest a functional role of the diG motif in intracellular transport of ORF3a.
持续的严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)/冠状病毒病(COVID-19)大流行引发了全球公共卫生危机。然而,每个人对SARS-CoV-2感染的反应各不相同,不同的病毒变体具有不同的致病性。因此,了解病毒决定因素如何导致COVID-19至关重要。病毒开放阅读框3a(ORF3a)蛋白就是其中一个病毒决定因素,因为其功能与细胞和组织损伤的诱导、疾病严重程度以及细胞因子风暴有关,而细胞因子风暴是COVID-19相关死亡的主要原因。ORF3a是一种膜相关蛋白。合成后,它从内质网、高尔基体转运到质膜以及包括内体和溶酶体在内的亚细胞内膜。然而,ORF3a在细胞内如何转运仍不清楚。本研究的目的是进行一项系统的诱变研究,以确定ORF3a蛋白与其亚细胞定位之间的结构关系。在假定的功能相关基序和其他感兴趣的区域产生单氨基酸(aa)和缺失突变。与野生型ORF3a相比,使用免疫荧光和ImageJ分析来确定和定量ORF3a突变体的亚细胞定位。野生型ORF3a主要定位于(皮尔逊系数约为0.8)内体和溶酶体的膜上。与早期发现一致,蛋白质输出所需的YXXΦ基序的缺失使ORF3a保留在高尔基体中。有趣的是,双甘氨酸(diG)区域(aa 187 - 188)的突变表现出与YXXΦ缺失相似的表型,这意味着diG基序在细胞内运输中具有类似的作用。事实上,中断两个甘氨酸残基中的任何一个,如单个缺失(dG188)、两个都缺失(dG187/dG188)或这些残基的替换(G188Y)都会导致ORF3a保留在高尔基体中(皮尔逊系数≥0.8)。结构分析进一步表明,diG基序支持反平行β4和β5片层之间的II型β转角,并通过两个单体之间的氢键与YXXΦ基序相连。diG - YXXΦ相互作用形成一种携手配置,可能促进二聚化。总之,这些观察结果表明diG基序在ORF3a的细胞内运输中具有功能作用。