Suppr超能文献

贝叶斯病毒等位基因选择推断 SARS-CoV-2 中的选择效应。

Inferring selection effects in SARS-CoV-2 with Bayesian Viral Allele Selection.

机构信息

Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America.

Generate Biomedicines, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Genet. 2022 Dec 12;18(12):e1010540. doi: 10.1371/journal.pgen.1010540. eCollection 2022 Dec.

Abstract

The global effort to sequence millions of SARS-CoV-2 genomes has provided an unprecedented view of viral evolution. Characterizing how selection acts on SARS-CoV-2 is critical to developing effective, long-lasting vaccines and other treatments, but the scale and complexity of genomic surveillance data make rigorous analysis challenging. To meet this challenge, we develop Bayesian Viral Allele Selection (BVAS), a principled and scalable probabilistic method for inferring the genetic determinants of differential viral fitness and the relative growth rates of viral lineages, including newly emergent lineages. After demonstrating the accuracy and efficacy of our method through simulation, we apply BVAS to 6.9 million SARS-CoV-2 genomes. We identify numerous mutations that increase fitness, including previously identified mutations in the SARS-CoV-2 Spike and Nucleocapsid proteins, as well as mutations in non-structural proteins whose contribution to fitness is less well characterized. In addition, we extend our baseline model to identify mutations whose fitness exhibits strong dependence on vaccination status as well as pairwise interaction effects, i.e. epistasis. Strikingly, both these analyses point to the pivotal role played by the N501 residue in the Spike protein. Our method, which couples Bayesian variable selection with a diffusion approximation in allele frequency space, lays a foundation for identifying fitness-associated mutations under the assumption that most alleles are neutral.

摘要

全球范围内对数百万份 SARS-CoV-2 基因组进行测序的努力,为我们提供了一个了解病毒进化的前所未有的视角。对 SARS-CoV-2 中选择作用的特征进行分析,对于开发有效、持久的疫苗和其他治疗方法至关重要,但基因组监测数据的规模和复杂性使得严格的分析具有挑战性。为了应对这一挑战,我们开发了贝叶斯病毒等位基因选择(BVAS)方法,这是一种用于推断病毒适应性和病毒谱系相对增长率(包括新出现的谱系)的遗传决定因素的有原则和可扩展的概率方法。在通过模拟证明了我们方法的准确性和有效性之后,我们将 BVAS 应用于 690 万份 SARS-CoV-2 基因组。我们确定了许多增加适应性的突变,包括 SARS-CoV-2 Spike 和核衣壳蛋白中已鉴定的突变,以及非结构蛋白中的突变,这些突变对适应性的贡献特征尚不明确。此外,我们扩展了基线模型,以识别那些适应性对疫苗接种状态具有强烈依赖性以及存在成对相互作用效应(即上位性)的突变。引人注目的是,这两种分析都指向了 Spike 蛋白中 N501 残基所起的关键作用。我们的方法将贝叶斯变量选择与等位基因频率空间中的扩散逼近相结合,为在假设大多数等位基因是中性的情况下识别适应性相关突变奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/9779722/310c3b5ca14a/pgen.1010540.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验