Suppr超能文献

生物材料加工:可持续纤维制造的久经考验的技巧。

Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication.

机构信息

Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.

Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden.

出版信息

Chem Rev. 2023 Mar 8;123(5):2155-2199. doi: 10.1021/acs.chemrev.2c00465. Epub 2022 Dec 12.

Abstract

There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.

摘要

人类迫切需要提高我们所生产和使用材料的可持续性。在这里,我们通过回顾从不同模型系统中提炼出的材料加工的物理和化学方面,探讨人类可以从自然界中学到什么,以可持续的方式制造具有优异材料性能的聚合物纤维,这些模型系统包括蜘蛛丝、贻贝足丝、海猪虫黏液、盲鳗黏液和槲寄生黏蛋白。我们确定了常见和不同的策略,强调了仿生设计和技术转移的潜力。尽管所调查的生物聚合物纤维具有多样性,但我们在多个系统中确定了几种常见的策略,包括:(1) 使用对刺激有响应的生物分子构建块;(2) 使用浓缩的流体前体相(例如凝聚物和液晶),并在受控的化学条件下储存;(3) 使用化学(pH 值、盐浓度、氧化还原化学)和物理(机械剪切、拉伸流动)刺激来触发从流体前体到固体材料的转变。重要的是,由于这些材料主要在生物体之外形成和发挥作用,因此这些原则更容易在合成系统中进行仿生设计。我们在综述的最后讨论了模拟生物模型系统的正在进行的努力和挑战,特别关注人工蜘蛛丝和贻贝启发材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验