Suppr超能文献

分层蛛丝蛋白胶束纳米颗粒是蜘蛛丝的基本前体。

Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks.

机构信息

Department of Chemistry, Northwestern University, Evanston, IL 60208.

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208.

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11507-11512. doi: 10.1073/pnas.1810203115. Epub 2018 Oct 22.

Abstract

Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable-properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains.

摘要

许多由蜘蛛和昆虫产生的天然丝是具有独特性能的材料,它们具有异常的韧性和拉伸强度,同时重量轻且可生物降解——这些性能是目前合成材料无法比拟的。人们尝试了多种方法来用重组蜘蛛丝丝蛋白制备人工丝,但都未能达到天然材料的有利性能。这是因为对体内丝蛋白到纤维纺丝过程的不完全了解,特别是对前纺丝液中丝蛋白纳米结构的真实形态以及这些纳米结构如何转化为微米级丝纤维的机制缺乏认识。本文中,我们确定了天然丝蛋白前体纳米结构在蜘蛛腺体内的物理形式,这些纳米结构是蜘蛛丝形成的种子,并揭示了在挤出过程中形成纤维的初始阶段发生的基本结构转变。我们结合溶液相扩散 NMR 和低温透射电子显微镜(cryo-TEM),直接证明了浓缩的丝蛋白以复杂的、分级纳米组装体(∼300nm 直径)的形式储存在黑寡妇蜘蛛的丝腺中,这些组装体由胶束亚结构组成,而这些亚结构本身参与了应对剪切时发生的初始纳米尺度转变。我们发现,先前的丝纤维前体储存的胶束理论并不完整,而且在纺丝过程中向液晶组织转变的第一步涉及到纳米级分级胶束亚结构的原纤化。

相似文献

1
Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks.分层蛛丝蛋白胶束纳米颗粒是蜘蛛丝的基本前体。
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11507-11512. doi: 10.1073/pnas.1810203115. Epub 2018 Oct 22.

引用本文的文献

5
Custom-designed, mass silk production in genetically engineered silkworms.定制设计的转基因家蚕大规模丝绸生产。
PNAS Nexus. 2024 Mar 22;3(4):pgae128. doi: 10.1093/pnasnexus/pgae128. eCollection 2024 Apr.
7
The role of flow in the self-assembly of dragline spider silk proteins.流场在牵引丝蜘蛛丝蛋白自组装中的作用。
Biophys J. 2023 Nov 7;122(21):4241-4253. doi: 10.1016/j.bpj.2023.09.020. Epub 2023 Oct 5.
9
Microcompartmentalization Controls Silk Feedstock Rheology.微区隔控制丝素原料流变学。
Langmuir. 2023 Jul 4;39(26):8984-8995. doi: 10.1021/acs.langmuir.3c00354. Epub 2023 Jun 21.

本文引用的文献

5
10
The First Step of Amyloidogenic Aggregation.淀粉样蛋白聚集的第一步。
J Phys Chem B. 2015 Jul 2;119(26):8260-7. doi: 10.1021/acs.jpcb.5b01957. Epub 2015 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验