Suppr超能文献

高精度单细胞转录组学揭示的相关基因模块。

Correlated gene modules uncovered by high-precision single-cell transcriptomics.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2206938119. doi: 10.1073/pnas.2206938119. Epub 2022 Dec 12.

Abstract

Correlations in gene expression are used to infer functional and regulatory relationships between genes. However, correlations are often calculated across different cell types or perturbations, causing genes with unrelated functions to be correlated. Here, we demonstrate that correlated modules can be better captured by measuring correlations of steady-state gene expression fluctuations in single cells. We report a high-precision single-cell RNA-seq method called MALBAC-DT to measure the correlation between any pair of genes in a homogenous cell population. Using this method, we were able to identify numerous cell-type specific and functionally enriched correlated gene modules. We confirmed through knockdown that a module enriched for p53 signaling predicted p53 regulatory targets more accurately than a consensus of ChIP-seq studies and that steady-state correlations were predictive of transcriptome-wide response patterns to perturbations. This approach provides a powerful way to advance our functional understanding of the genome.

摘要

基因表达的相关性被用来推断基因之间的功能和调控关系。然而,相关性通常是在不同的细胞类型或干扰下计算的,这导致具有不相关功能的基因发生相关性。在这里,我们证明通过测量单细胞中稳态基因表达波动的相关性,可以更好地捕捉相关模块。我们报告了一种高精度的单细胞 RNA-seq 方法 MALBAC-DT,用于测量同质细胞群体中任意两个基因之间的相关性。使用这种方法,我们能够识别出许多细胞类型特异性和功能丰富的相关基因模块。我们通过敲低证实,富集 p53 信号的模块比 ChIP-seq 研究的共识更准确地预测 p53 调节靶点,并且稳态相关性可预测对干扰的转录组范围反应模式。这种方法为我们深入了解基因组的功能提供了一种强大的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed52/9907105/c5ce87f67d8a/pnas.2206938119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验