Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
School of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea.
Nat Commun. 2022 Dec 12;13(1):6775. doi: 10.1038/s41467-022-34531-y.
Ultrahigh-resolution patterning with high-throughput and high-fidelity is highly in demand for expanding the potential of organic light-emitting diodes (OLEDs) from mobile and TV displays into near-to-eye microdisplays. However, current patterning techniques so far suffer from low resolution, consecutive pattern for RGB pixelation, low pattern fidelity, and throughput issue. Here, we present a silicone engineered anisotropic lithography of the organic light-emitting semiconductor (OLES) that in-situ forms a non-volatile etch-blocking layer during reactive ion etching. This unique feature not only slows the etch rate but also enhances the anisotropy of etch direction, leading to gain delicate control in forming ultrahigh-density multicolor OLES patterns (up to 4500 pixels per inch) through photolithography. This patterning strategy inspired by silicon etching chemistry is expected to provide new insights into ultrahigh-density OLED microdisplays.
超高分辨率图案化具有高通量和高保真度,这对于将有机发光二极管 (OLED) 的潜力从移动和电视显示器扩展到近眼微显示器非常重要。然而,目前的图案化技术迄今为止存在分辨率低、RGB 像素化的连续图案、图案保真度低和吞吐量问题。在这里,我们提出了一种有机发光半导体 (OLES) 的硅工程各向异性光刻技术,该技术在反应离子刻蚀过程中就地形成非易失性蚀刻阻挡层。这种独特的特性不仅降低了蚀刻速率,而且增强了蚀刻方向的各向异性,从而通过光刻形成超高密度多色 OLES 图案(高达每英寸 4500 像素)的精细控制。这种受硅蚀刻化学启发的图案化策略有望为超高密度 OLED 微显示器提供新的见解。