Zheng Yu-Qing, Liu Yuxin, Zhong Donglai, Nikzad Shayla, Liu Shuhan, Yu Zhiao, Liu Deyu, Wu Hung-Chin, Zhu Chenxin, Li Jinxing, Tran Helen, Tok Jeffrey B-H, Bao Zhenan
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Science. 2021 Jul 2;373(6550):88-94. doi: 10.1126/science.abh3551.
Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.
聚合物电子材料推动了柔性可拉伸电子器件的发展。然而,由于缺乏一种通用的用于类皮肤和弹性电路的微纳制造方法,与硅基器件相比,此类器件的密度较低,并行信号记录和处理能力也有限。我们展示了一种单片光学微光刻工艺,该工艺通过连续的紫外光触发溶解度调制直接对一组弹性电子材料进行微图案化。我们制造出了沟道长度为2微米、密度为每平方厘米42000个晶体管的晶体管。我们还制造了包括异或门和半加器在内的弹性电路,这两者都是算术逻辑单元的基本组件。我们的工艺为实现具有与刚性对应物相媲美的性能的复杂、高密度和多层弹性电路的晶圆级制造提供了一条途径。