Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Exactas, INTIA, Tandil, Buenos Aires, Argentina.
Sci Rep. 2022 Dec 12;12(1):21443. doi: 10.1038/s41598-022-25863-2.
Navigation is one of the most fundamental skills of animals. During spatial navigation, grid cells in the medial entorhinal cortex process speed and direction of the animal to map the environment. Hippocampal place cells, in turn, encode place using sensory signals and reduce the accumulated error of grid cells for path integration. Although both cell types are part of the path integration system, the dynamic relationship between place and grid cells and the error reduction mechanism is yet to be understood. We implemented a realistic model of grid cells based on a continuous attractor model. The grid cell model was coupled to a place cell model to address their dynamic relationship during a simulated animal's exploration of a square arena. The grid cell model processed the animal's velocity and place field information from place cells. Place cells incorporated salient visual features and proximity information with input from grid cells to define their place fields. Grid cells had similar spatial phases but a diversity of spacings and orientations. To determine the role of place cells in error reduction for path integration, the animal's position estimates were decoded from grid cell activities with and without the place field input. We found that the accumulated error was reduced as place fields emerged during the exploration. Place fields closer to the animal's current location contributed more to the error reduction than remote place fields. Place cells' fields encoding space could function as spatial anchoring signals for precise path integration by grid cells.
导航是动物最基本的技能之一。在空间导航过程中,内侧缰核中的网格细胞处理动物的速度和方向,以对环境进行映射。海马体位置细胞则通过感觉信号对位置进行编码,并减少网格细胞在路径整合过程中的累积误差。尽管这两种细胞类型都是路径整合系统的一部分,但位置细胞和网格细胞之间的动态关系以及误差减少机制仍有待理解。我们实现了一个基于连续吸引子模型的真实网格细胞模型。将网格细胞模型与位置细胞模型耦合,以在模拟动物探索正方形竞技场的过程中解决它们之间的动态关系。网格细胞模型处理来自位置细胞的动物速度和位置场信息。位置细胞将显著的视觉特征和接近信息与来自网格细胞的输入相结合,以定义其位置场。网格细胞具有相似的空间相位,但间距和方向具有多样性。为了确定位置细胞在路径整合的误差减少中的作用,我们从网格细胞活动中解码了动物的位置估计值,有和没有位置场输入。我们发现,随着探索的进行,位置场的出现减少了累积误差。与远距离位置场相比,靠近动物当前位置的位置场对误差减少的贡献更大。编码空间的位置细胞的场可以作为网格细胞进行精确路径整合的空间锚定信号。