Sarramone Luca, Fernandez-Leon Jose A
Exactas-INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Cogn Neurodyn. 2025 Dec;19(1):76. doi: 10.1007/s11571-025-10263-9. Epub 2025 May 19.
Most mammals efficiently overcome self-localization deviations by coordinating grid and place cells in their brain's navigation system. However, the coordination of grid cell modules during spatial navigation and its impact on position estimation are poorly understood. This study addresses this issue by introducing a system that decodes grid-cell module activity and integrates networks of multiple grid-cell modules for self-position estimation in a mobile robot. Our results show that even when individual grid module estimates deviated substantially from the robot's actual location, the modules remained tightly coordinated. Corrections of these deviations were studied based on anchoring the activity of grid cells to spatial landmarks. Detailed numerical investigations indicate that path integration is critically dependent on the intrinsic coordination between grid cell modules which enhances the accuracy and reliability of spatial navigation. Furthermore, we show that this coordination enables effective vector navigation, even when the overall position estimation is inaccurate. These insights advance our understanding of grid-cell module coordination in location estimation during path integration and offer potential applications in robotics.
大多数哺乳动物通过协调大脑导航系统中的网格细胞和位置细胞,有效地克服自我定位偏差。然而,空间导航过程中网格细胞模块的协调及其对位置估计的影响却鲜为人知。本研究通过引入一个系统来解决这一问题,该系统可解码网格细胞模块活动,并集成多个网格细胞模块网络,用于移动机器人的自我位置估计。我们的结果表明,即使单个网格模块的估计与机器人的实际位置有很大偏差,这些模块仍保持紧密协调。基于将网格细胞的活动锚定到空间地标,对这些偏差的校正进行了研究。详细的数值研究表明,路径积分严重依赖于网格细胞模块之间的内在协调,这提高了空间导航的准确性和可靠性。此外,我们表明,即使整体位置估计不准确,这种协调也能实现有效的矢量导航。这些见解增进了我们对路径积分过程中位置估计时网格细胞模块协调的理解,并为机器人技术提供了潜在应用。