Suppr超能文献

环境边界作为一种校正和锚定空间地图的机制。

Environmental boundaries as a mechanism for correcting and anchoring spatial maps.

作者信息

Giocomo Lisa M

机构信息

Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.

出版信息

J Physiol. 2016 Nov 15;594(22):6501-6511. doi: 10.1113/JP270624. Epub 2016 Jan 5.

Abstract

Ubiquitous throughout the animal kingdom, path integration-based navigation allows an animal to take a circuitous route out from a home base and using only self-motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place-specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration-based spatial navigation. Supporting this idea, grid cells appear to provide an environment-independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark-driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations.

摘要

基于路径整合的导航在动物界无处不在,它使动物能够从一个大本营出发,沿着一条迂回的路线行进,并仅利用自身运动线索计算出一条直接返回的向量。尽管动物的奔跑速度和方向存在变化,但内嗅皮层内侧的网格细胞会在特定的重复位置放电,这表明内嗅皮层内侧回路可能是基于路径整合的空间导航的潜在神经基础。支持这一观点的是,网格细胞似乎提供了一种与环境无关的动物在空间中位置的度量表示,并且即使在完全黑暗的环境中也能保持其周期性放电结构。然而,最近的一系列实验表明,具有空间响应性的内嗅皮层内侧神经元对环境线索的依赖方式比之前提出的更为复杂。虽然多种类型的地标可能会影响内嗅皮层的空间编码,但环境边界已成为显著的地标,既能纠正内嗅皮层网格细胞中的误差,又能将内部空间表征与外部空间世界的几何形状联系起来。边界对误差校正和网格对称性的影响指向了内嗅皮层内侧边界细胞,这些细胞仅在环境边界附近以高速率放电,它们可能是地标驱动的空间编码控制的潜在神经基础。边界细胞对其他内嗅皮层细胞群体(如网格细胞)的影响可能取决于可塑性,这增加了经验在决定外部线索如何影响内部空间表征方面起关键作用的可能性。

相似文献

1
Environmental boundaries as a mechanism for correcting and anchoring spatial maps.
J Physiol. 2016 Nov 15;594(22):6501-6511. doi: 10.1113/JP270624. Epub 2016 Jan 5.
3
Environmental boundaries as an error correction mechanism for grid cells.
Neuron. 2015 May 6;86(3):827-39. doi: 10.1016/j.neuron.2015.03.039. Epub 2015 Apr 16.
5
Modelling effects on grid cells of sensory input during self-motion.
J Physiol. 2016 Nov 15;594(22):6513-6526. doi: 10.1113/JP270649. Epub 2016 Jul 10.
6
Framing the grid: effect of boundaries on grid cells and navigation.
J Physiol. 2016 Nov 15;594(22):6489-6499. doi: 10.1113/JP270607. Epub 2016 May 10.
7
Microstructure of a spatial map in the entorhinal cortex.
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.
9
Modeling the Effect of Environmental Geometries on Grid Cell Representations.
Front Neural Circuits. 2019 Jan 14;12:120. doi: 10.3389/fncir.2018.00120. eCollection 2018.

引用本文的文献

1
Grid cells: the missing link in understanding Parkinson's disease?
Front Neurosci. 2024 Feb 8;18:1276714. doi: 10.3389/fnins.2024.1276714. eCollection 2024.
2
Grid cells, border cells, and discrete complex analysis.
Front Comput Neurosci. 2023 Oct 10;17:1242300. doi: 10.3389/fncom.2023.1242300. eCollection 2023.
3
Anatomical organization of temporally correlated neural calcium activity in the hippocampal CA1 region.
iScience. 2023 Apr 21;26(5):106703. doi: 10.1016/j.isci.2023.106703. eCollection 2023 May 19.
4
Effects of neuromodulation-inspired mechanisms on the performance of deep neural networks in a spatial learning task.
iScience. 2023 Jan 23;26(2):106026. doi: 10.1016/j.isci.2023.106026. eCollection 2023 Feb 17.
5
Neurophysiology of Remembering.
Annu Rev Psychol. 2022 Jan 4;73:187-215. doi: 10.1146/annurev-psych-021721-110002. Epub 2021 Sep 17.
6
The grid code for ordered experience.
Nat Rev Neurosci. 2021 Oct;22(10):637-649. doi: 10.1038/s41583-021-00499-9. Epub 2021 Aug 27.
7
Microcircuits for spatial coding in the medial entorhinal cortex.
Physiol Rev. 2022 Apr 1;102(2):653-688. doi: 10.1152/physrev.00042.2020. Epub 2021 Jul 13.
8
Perception of urban subdivisions in pedestrian movement simulation.
PLoS One. 2020 Dec 31;15(12):e0244099. doi: 10.1371/journal.pone.0244099. eCollection 2020.
10
Structuring Knowledge with Cognitive Maps and Cognitive Graphs.
Trends Cogn Sci. 2021 Jan;25(1):37-54. doi: 10.1016/j.tics.2020.10.004. Epub 2020 Nov 26.

本文引用的文献

1
Speed cells in the medial entorhinal cortex.
Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.
2
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
3
A Developmental Switch in Place Cell Accuracy Coincides with Grid Cell Maturation.
Neuron. 2015 Jun 3;86(5):1167-73. doi: 10.1016/j.neuron.2015.05.011.
4
Grid cells form a global representation of connected environments.
Curr Biol. 2015 May 4;25(9):1176-82. doi: 10.1016/j.cub.2015.02.037. Epub 2015 Apr 23.
5
Environmental boundaries as an error correction mechanism for grid cells.
Neuron. 2015 May 6;86(3):827-39. doi: 10.1016/j.neuron.2015.03.039. Epub 2015 Apr 16.
6
Grid cell symmetry is shaped by environmental geometry.
Nature. 2015 Feb 12;518(7538):232-235. doi: 10.1038/nature14153.
7
Shearing-induced asymmetry in entorhinal grid cells.
Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.
8
Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
Nat Neurosci. 2015 Jan;18(1):121-8. doi: 10.1038/nn.3884. Epub 2014 Nov 24.
9
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
Neuron. 2014 Oct 22;84(2):442-56. doi: 10.1016/j.neuron.2014.08.042.
10
A model of grid cell development through spatial exploration and spike time-dependent plasticity.
Neuron. 2014 Jul 16;83(2):481-495. doi: 10.1016/j.neuron.2014.06.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验