Giocomo Lisa M
Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.
J Physiol. 2016 Nov 15;594(22):6501-6511. doi: 10.1113/JP270624. Epub 2016 Jan 5.
Ubiquitous throughout the animal kingdom, path integration-based navigation allows an animal to take a circuitous route out from a home base and using only self-motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place-specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration-based spatial navigation. Supporting this idea, grid cells appear to provide an environment-independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark-driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations.
基于路径整合的导航在动物界无处不在,它使动物能够从一个大本营出发,沿着一条迂回的路线行进,并仅利用自身运动线索计算出一条直接返回的向量。尽管动物的奔跑速度和方向存在变化,但内嗅皮层内侧的网格细胞会在特定的重复位置放电,这表明内嗅皮层内侧回路可能是基于路径整合的空间导航的潜在神经基础。支持这一观点的是,网格细胞似乎提供了一种与环境无关的动物在空间中位置的度量表示,并且即使在完全黑暗的环境中也能保持其周期性放电结构。然而,最近的一系列实验表明,具有空间响应性的内嗅皮层内侧神经元对环境线索的依赖方式比之前提出的更为复杂。虽然多种类型的地标可能会影响内嗅皮层的空间编码,但环境边界已成为显著的地标,既能纠正内嗅皮层网格细胞中的误差,又能将内部空间表征与外部空间世界的几何形状联系起来。边界对误差校正和网格对称性的影响指向了内嗅皮层内侧边界细胞,这些细胞仅在环境边界附近以高速率放电,它们可能是地标驱动的空间编码控制的潜在神经基础。边界细胞对其他内嗅皮层细胞群体(如网格细胞)的影响可能取决于可塑性,这增加了经验在决定外部线索如何影响内部空间表征方面起关键作用的可能性。