Wu Guangqi, Wang Runzhong, Coley Connor W
Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA.
Digit Discov. 2025 Aug 4. doi: 10.1039/d5dd00233h.
We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (, well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.
我们提出了一种优化策略,以减少自动化化学实验室环境中液体处理操作的执行时间。通过将任务表述为容量受限车辆路径问题(CVRP),我们利用传统上用于物流和运输规划的启发式求解器来优化任务执行时间。以具有独立可控吸头的8通道移液器为例,我们的方法在不同的实验室器具格式(如微孔板、样品瓶架)中展示了强大的优化性能,与基线排序方法相比,随机生成任务的执行时间最多可减少37%。我们进一步将该方法应用于实际的高通量材料发现活动,观察到与性能最佳的基于排序的策略相比,3分钟的优化时间使执行时间减少了61分钟。我们的结果突出了在无需任何硬件修改的情况下,自动化实验室的通量和效率有大幅提高的潜力。这种优化策略提供了一种实用且可扩展的解决方案,以加速药物组合筛选、反应条件优化、材料开发和配方工程等领域中的组合实验。