Suppr超能文献

基于动态对比增强磁共振成像(DCE-MRI)和超声图像的多模态影像组学列线图用于乳腺良恶性病变分类

Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification.

作者信息

Liu Xinmiao, Zhang Ji, Zhou Jiejie, He Yun, Xu Yunyu, Zhang Zhenhua, Cao Guoquan, Miao Haiwei, Chen Zhongwei, Zhao Youfan, Jin Xiance, Wang Meihao

机构信息

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.

出版信息

Front Oncol. 2022 Dec 2;12:992509. doi: 10.3389/fonc.2022.992509. eCollection 2022.

Abstract

OBJECTIVE

To develop a multi-modality radiomics nomogram based on DCE-MRI, B-mode ultrasound (BMUS) and strain elastography (SE) images for classifying benign and malignant breast lesions.

MATERIAL AND METHODS

In this retrospective study, 345 breast lesions from 305 patients who underwent DCE-MRI, BMUS and SE examinations were randomly divided into training (n = 241) and testing (n = 104) datasets. Radiomics features were extracted from manually contoured images. The inter-class correlation coefficient (ICC), Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection and radiomics signature building. Multivariable logistic regression was used to develop a radiomics nomogram incorporating radiomics signature and clinical factors. The performance of the radiomics nomogram was evaluated by its discrimination, calibration, and clinical usefulness and was compared with BI-RADS classification evaluated by a senior breast radiologist.

RESULTS

The All-Combination radiomics signature derived from the combination of DCE-MRI, BMUS and SE images showed better diagnostic performance than signatures derived from single modality alone, with area under the curves (AUCs) of 0.953 and 0.941 in training and testing datasets, respectively. The multi-modality radiomics nomogram incorporating the All-Combination radiomics signature and age showed excellent discrimination with the highest AUCs of 0.964 and 0.951 in two datasets, respectively, which outperformed all single modality radiomics signatures and BI-RADS classification. Furthermore, the specificity of radiomics nomogram was significantly higher than BI-RADS classification (both < 0.04) with the same sensitivity in both datasets.

CONCLUSION

The proposed multi-modality radiomics nomogram based on DCE-MRI and ultrasound images has the potential to serve as a non-invasive tool for classifying benign and malignant breast lesions and reduce unnecessary biopsy.

摘要

目的

基于动态对比增强磁共振成像(DCE-MRI)、B 型超声(BMUS)和应变弹性成像(SE)图像开发一种多模态放射组学列线图,用于乳腺良恶性病变的分类。

材料与方法

在这项回顾性研究中,将 305 例接受 DCE-MRI、BMUS 和 SE 检查的患者的 345 个乳腺病变随机分为训练集(n = 241)和测试集(n = 104)。从手动勾勒的图像中提取放射组学特征。应用组内相关系数(ICC)、曼-惠特尼 U 检验和最小绝对收缩和选择算子(LASSO)回归进行特征选择和构建放射组学特征。使用多变量逻辑回归开发一种结合放射组学特征和临床因素的放射组学列线图。通过其辨别力、校准度和临床实用性评估放射组学列线图的性能,并与由一位资深乳腺放射科医生评估的 BI-RADS 分类进行比较。

结果

源自 DCE-MRI、BMUS 和 SE 图像组合的全组合放射组学特征显示出比单独源自单一模态的特征更好的诊断性能,训练集和测试集的曲线下面积(AUC)分别为 0.953 和 0.941。结合全组合放射组学特征和年龄的多模态放射组学列线图在两个数据集中分别显示出 0.964 和 0.951 的最高 AUC,具有出色的辨别力,优于所有单模态放射组学特征和 BI-RADS 分类。此外,在两个数据集中,放射组学列线图的特异性显著高于 BI-RADS 分类(均 P < 0.04),而敏感性相同。

结论

所提出的基于 DCE-MRI 和超声图像的多模态放射组学列线图有潜力作为一种非侵入性工具用于乳腺良恶性病变的分类,并减少不必要的活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a355/9755840/ad3a7a23a764/fonc-12-992509-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验