Suppr超能文献

基于两种类型超声弹性成像图的影像组学分析:甲状腺微小结节良恶性预测。

Predicting Malignancy of Thyroid Micronodules: Radiomics Analysis Based on Two Types of Ultrasound Elastography Images.

机构信息

Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Medical Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

Acad Radiol. 2023 Oct;30(10):2156-2168. doi: 10.1016/j.acra.2023.02.001. Epub 2023 Mar 30.

Abstract

RATIONALE AND OBJECTIVES

To develop a multimodal ultrasound radiomics nomogram for accurate classification of thyroid micronodules.

MATERIALS AND METHODS

A retrospective study including 181 thyroid micronodules within 179 patients was conducted. Radiomics features were extracted from strain elastography (SE), shear wave elastography (SWE) and B-mode ultrasound (BMUS) images. Minimum redundancy maximum relevance and least absolute shrinkage and selection operator algorithms were used to select malignancy-related features. BMUS, SE, and SWE radiomics scores (Rad-scores) were then constructed. Multivariable logistic regression was conducted using radiomics signatures along with clinical data, and a nomogram was ultimately established. The calibration, discriminative, and clinical usefulness were considered to evaluate its performance. A clinical prediction model was also built using independent clinical risk factors for comparison.

RESULTS

An aspect ratio ≥ 1, mean elasticity index, BMUS Rad-score, SE Rad-score, and SWE Rad-score were identified as the independent predictors for predicting malignancy of thyroid micronodules by multivariable logistic regression. The radiomics nomogram based on these characteristics showed favorable calibration and discriminative capabilities (AUCs: 0.903 and 0.881 for training and validation cohorts, respectively), all outperforming clinical prediction model (AUCs: 0.791 and 0.626, respectively). The decision curve analysis also confirmed clinical usefulness of the nomogram. The significant improvement of net reclassification index and integrated discriminatory improvement indicated that multimodal ultrasound radiomics signatures might work as new imaging markers for classifying thyroid micronodules.

CONCLUSION

The nomogram combining multimodal ultrasound radiomics features and clinical factors has the potential to be used for accurate diagnosis of thyroid micronodules in the clinic.

摘要

目的

开发一种多模态超声放射组学列线图,以准确分类甲状腺微小结节。

材料与方法

本研究为回顾性研究,共纳入 179 例患者的 181 个甲状腺微小结节。从应变弹性成像(SE)、剪切波弹性成像(SWE)和 B 型超声(BMUS)图像中提取放射组学特征。采用最小冗余最大相关性和最小绝对值收缩和选择算子算法选择与恶性肿瘤相关的特征。然后构建 BMUS、SE 和 SWE 放射组学评分(Rad-score)。使用放射组学特征和临床数据进行多变量逻辑回归,并最终建立列线图。校准、判别和临床有用性用于评估其性能。还建立了一个使用独立临床危险因素的临床预测模型进行比较。

结果

多变量逻辑回归确定纵横比≥1、平均弹性指数、BMUS Rad-score、SE Rad-score 和 SWE Rad-score 是预测甲状腺微小结节恶性肿瘤的独立预测因素。基于这些特征的放射组学列线图显示出良好的校准和判别能力(训练和验证队列的 AUC 分别为 0.903 和 0.881),均优于临床预测模型(AUC 分别为 0.791 和 0.626)。决策曲线分析也证实了该列线图的临床实用性。净重新分类指数和综合判别改善的显著提高表明,多模态超声放射组学特征可能成为甲状腺微小结节分类的新影像学标志物。

结论

结合多模态超声放射组学特征和临床因素的列线图有可能在临床上用于准确诊断甲状腺微小结节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验