Suppr超能文献

通过深化图自动编码器实现链接预测的稳定与增强

Stabilizing and Enhancing Link Prediction through Deepened Graph Auto-Encoders.

作者信息

Wu Xinxing, Cheng Qiang

机构信息

University of Kentucky, Lexington, Kentucky, U.S.A.

出版信息

IJCAI (U S). 2022 Jul;2022:3587-3593. doi: 10.24963/ijcai.2022/498.

Abstract

Graph neural networks have been widely used for a variety of learning tasks. Link prediction is a relatively under-studied graph learning task, with current state-of-the-art models based on one- or two-layer shallow graph auto-encoder (GAE) architectures. In this paper, we overcome the limitation of current methods for link prediction of non-Euclidean network data, which can only use shallow GAEs and variational GAEs. Our proposed methods innovatively incorporate standard auto-encoders (AEs) into the architectures of GAEs to capitalize on the intimate coupling of node and edge information in complex network data. Empirically, extensive experiments on various datasets demonstrate the competitive performance of our proposed approach. Theoretically, we prove that our deep extensions can inclusively express multiple polynomial filters with different orders. The codes of this paper are available at https://github.com/xinxingwu-uk/DGAE.

摘要

图神经网络已被广泛应用于各种学习任务。链路预测是一个相对较少被研究的图学习任务,当前的最先进模型基于一层或两层的浅层图自动编码器(GAE)架构。在本文中,我们克服了当前非欧几里得网络数据链路预测方法的局限性,这些方法只能使用浅层GAE和变分GAE。我们提出的方法创新性地将标准自动编码器(AE)纳入GAE架构,以利用复杂网络数据中节点和边信息的紧密耦合。从经验上来说,在各种数据集上进行的大量实验证明了我们提出的方法具有竞争力的性能。从理论上来说,我们证明了我们的深度扩展可以包容性地表达不同阶数的多个多项式滤波器。本文的代码可在https://github.com/xinxingwu-uk/DGAE获取。

相似文献

5
DyVGRNN: DYnamic mixture Variational Graph Recurrent Neural Networks.DyVGRNN:动态混合变分图递归神经网络。
Neural Netw. 2023 Aug;165:596-610. doi: 10.1016/j.neunet.2023.05.048. Epub 2023 Jun 5.
9
Multi-sample dual-decoder graph autoencoder.多样本双解码器图自动编码器
Methods. 2023 Mar;211:31-41. doi: 10.1016/j.ymeth.2023.02.002. Epub 2023 Feb 13.
10
Unsupervised Graph Embedding via Adaptive Graph Learning.通过自适应图学习实现无监督图嵌入
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):5329-5336. doi: 10.1109/TPAMI.2022.3202158. Epub 2023 Mar 7.

本文引用的文献

1
Structure-Aware DropEdge Toward Deep Graph Convolutional Networks.面向深度图卷积网络的结构感知DropEdge
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15565-15577. doi: 10.1109/TNNLS.2023.3288484. Epub 2024 Oct 29.
2
The graph neural network model.图神经网络模型。
IEEE Trans Neural Netw. 2009 Jan;20(1):61-80. doi: 10.1109/TNN.2008.2005605. Epub 2008 Dec 9.
3
Reducing the dimensionality of data with neural networks.使用神经网络降低数据维度。
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验