Wu Xinxing, Cheng Qiang
University of Kentucky, Lexington, Kentucky, U.S.A.
IJCAI (U S). 2022 Jul;2022:3587-3593. doi: 10.24963/ijcai.2022/498.
Graph neural networks have been widely used for a variety of learning tasks. Link prediction is a relatively under-studied graph learning task, with current state-of-the-art models based on one- or two-layer shallow graph auto-encoder (GAE) architectures. In this paper, we overcome the limitation of current methods for link prediction of non-Euclidean network data, which can only use shallow GAEs and variational GAEs. Our proposed methods innovatively incorporate standard auto-encoders (AEs) into the architectures of GAEs to capitalize on the intimate coupling of node and edge information in complex network data. Empirically, extensive experiments on various datasets demonstrate the competitive performance of our proposed approach. Theoretically, we prove that our deep extensions can inclusively express multiple polynomial filters with different orders. The codes of this paper are available at https://github.com/xinxingwu-uk/DGAE.
图神经网络已被广泛应用于各种学习任务。链路预测是一个相对较少被研究的图学习任务,当前的最先进模型基于一层或两层的浅层图自动编码器(GAE)架构。在本文中,我们克服了当前非欧几里得网络数据链路预测方法的局限性,这些方法只能使用浅层GAE和变分GAE。我们提出的方法创新性地将标准自动编码器(AE)纳入GAE架构,以利用复杂网络数据中节点和边信息的紧密耦合。从经验上来说,在各种数据集上进行的大量实验证明了我们提出的方法具有竞争力的性能。从理论上来说,我们证明了我们的深度扩展可以包容性地表达不同阶数的多个多项式滤波器。本文的代码可在https://github.com/xinxingwu-uk/DGAE获取。