Suppr超能文献

基于 ABCD STOP 任务的大脑功能与行为的机器学习方法。

Machine learning approaches linking brain function to behavior in the ABCD STOP task.

机构信息

Department of Psychiatry, University of Vermont, Burlington, Vermont, USA.

出版信息

Hum Brain Mapp. 2023 Mar;44(4):1751-1766. doi: 10.1002/hbm.26172. Epub 2022 Dec 19.

Abstract

The stop-signal task (SST) is one of the most common fMRI tasks of response inhibition, and its performance measure, the stop-signal reaction-time (SSRT), is broadly used as a measure of cognitive control processes. The neurobiology underlying individual or clinical differences in response inhibition remain unclear, consistent with the general pattern of quite modest brain-behavior associations that have been recently reported in well-powered large-sample studies. Here, we investigated the potential of multivariate, machine learning (ML) methods to improve the estimation of individual differences in SSRT with multimodal structural and functional region of interest-level neuroimaging data from 9- to 11-year-olds children in the ABCD Study. Six ML algorithms were assessed across modalities and fMRI tasks. We verified that SST activation performed best in predicting SSRT among multiple modalities including morphological MRI (cortical surface area/thickness), diffusion tensor imaging, and fMRI task activations, and then showed that SST activation explained 12% of the variance in SSRT using cross-validation and out-of-sample lockbox data sets (n = 7298). Brain regions that were more active during the task and that showed more interindividual variation in activation were better at capturing individual differences in performance on the task, but this was only true for activations when successfully inhibiting. Cortical regions outperformed subcortical areas in explaining individual differences but the two hemispheres performed equally well. These results demonstrate that the detection of reproducible links between brain function and performance can be improved with multivariate approaches and give insight into a number of brain systems contributing to individual differences in this fundamental cognitive control process.

摘要

停止信号任务(SST)是最常见的 fMRI 反应抑制任务之一,其性能衡量指标——停止信号反应时间(SSRT)被广泛用作认知控制过程的衡量标准。个体或临床反应抑制差异的神经生物学基础仍不清楚,这与最近在具有强大样本量的大型研究中报告的相当适度的大脑-行为关联的总体模式一致。在这里,我们研究了使用多模态结构和功能感兴趣区域水平神经影像学数据的多元、机器学习(ML)方法是否可以提高 ABCD 研究中的 9-11 岁儿童的 SSRT 个体差异的估计。评估了六种 ML 算法在多种模态和 fMRI 任务中的性能。我们验证了 SST 激活在预测 SSRT 方面表现最佳,包括形态磁共振成像(皮质表面积/厚度)、弥散张量成像和 fMRI 任务激活等多种模态,然后使用交叉验证和样本外锁定盒数据集(n=7298)表明 SST 激活解释了 SSRT 方差的 12%。在任务期间更活跃且激活个体间差异更大的大脑区域更能捕捉到任务表现的个体差异,但这仅适用于成功抑制时的激活。皮质区域比皮质下区域更能解释个体差异,但两个半球的表现相同。这些结果表明,使用多元方法可以提高大脑功能和表现之间可重复联系的检测,并深入了解许多大脑系统对这种基本认知控制过程中个体差异的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6174/9921227/2e0c1efa5aed/HBM-44-1751-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验