Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Pfizer Inc., Medicine and Design, Groton, Connecticut 06340, United States.
J Am Chem Soc. 2023 Jan 11;145(1):537-550. doi: 10.1021/jacs.2c10775. Epub 2022 Dec 21.
Cyclic amines are ubiquitous structural motifs found in pharmaceuticals and biologically active natural products, making methods for their elaboration via direct C-H functionalization of considerable synthetic value. Herein, we report the development of an iron-based biocatalytic strategy for enantioselective α-C-H functionalization of pyrrolidines and other saturated -heterocycles via a carbene transfer reaction with diazoacetone. Currently unreported for organometallic catalysts, this transformation can be accomplished in high yields, high catalytic activity, and high stereoselectivity (up to 99:1 e.r. and 20,350 TON) using engineered variants of cytochrome P450 CYP119 from . This methodology was further extended to enable enantioselective α-C-H functionalization in the presence of ethyl diazoacetate as carbene donor (up to 96:4 e.r. and 18,270 TON), and the two strategies were combined to achieve a one-pot as well as a tandem dual C-H functionalization of a cyclic amine substrate with enzyme-controlled diastereo- and enantiodivergent selectivity. This biocatalytic approach is amenable to gram-scale synthesis and can be applied to drug scaffolds for late-stage C-H functionalization. This work provides an efficient and tunable method for direct asymmetric α-C-H functionalization of saturated -heterocycles, which should offer new opportunities for the synthesis, discovery, and optimization of bioactive molecules.
环胺是在药物和具有生物活性的天然产物中普遍存在的结构基序,因此通过直接 C-H 功能化来构建这些结构具有重要的合成价值。在此,我们报告了一种基于铁的生物催化策略的发展,该策略通过与重氮乙酮的卡宾转移反应,实现了吡咯烷和其他饱和杂环的对映选择性 α-C-H 官能化。目前尚未报道有机金属催化剂的这种转化,可以使用来自. 的细胞色素 P450 CYP119 的工程变体以高收率、高催化活性和高对映选择性(高达 99:1 的对映体过量和 20,350 的周转数)来完成。该方法进一步扩展到在乙基重氮乙酸酯作为卡宾供体的存在下实现对映选择性的 α-C-H 官能化(高达 96:4 的对映体过量和 18,270 的周转数),并且将这两种策略结合起来,实现了环状胺底物的一锅法以及串联双重 C-H 官能化,酶控制的非对映和对映选择性。这种生物催化方法适用于克级规模的合成,并可应用于药物支架的后期 C-H 官能化。这项工作为饱和杂环的直接不对称 α-C-H 官能化提供了一种高效且可调的方法,这应该为生物活性分子的合成、发现和优化提供新的机会。