Suppr超能文献

硫胺素依赖性酶通过分子间氢原子转移实现的光生物催化对映选择性苄基C(sp)-H酰化反应

Photobiocatalytic Enantioselective Benzylic C(sp)-H Acylation Enabled by Thiamine-Dependent Enzymes via Intermolecular Hydrogen Atom Transfer.

作者信息

Lu Yen-Chu, Adukure Ronald D, Roy Satyajit, Chien Derek L, McGill Matthew J, Polara Sarthi, Cisneros G Andrés, Scheidt Karl A, Fasan Rudi

机构信息

Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States.

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

出版信息

J Am Chem Soc. 2025 May 28;147(21):17804-17816. doi: 10.1021/jacs.5c01642. Epub 2025 May 14.

Abstract

Hydrogen atom transfer (HAT) constitutes a powerful mechanism exploited in biology and chemistry to functionalize ubiquitous C(sp)-H bonds in organic molecules. Despite its synthetic potential, achieving stereocontrol in chemical HAT-mediated C-H functionalization transformations remains challenging. By merging the radical reactivity of thiamine (ThDP)-dependent enzymes with chemical hydrogen atom transfer, we report here a photobiocatalytic strategy for the enantioselective C(sp)-H acylation of an organic substrate, a transformation not found in nature nor currently attainable by chemical means. This method enables the direct functionalization of benzylic C(sp)-H sites in a broad range of substrates to furnish valuable enantioenriched ketone motifs with good to high enantioselectivity (up to 96% ee). Mechanistic and spectroscopic studies support the involvement of radical species derived from the Breslow intermediate and C-H substrate, highlight the critical role of the photocatalyst and hydrogen atom abstraction reagents for productive catalysis, and reveal a specific enzyme/photocatalyst interaction favoring single electron transfer during catalysis. Further insights into how the enantioselectivity of the C-C bond-forming reaction is controlled by the enzyme and influenced by active site mutations were gained via molecular modeling. This study illustrates the productive integration of ThDP-mediated biocatalysis with chemical HAT, expanding the range of asymmetric C(sp)-H functionalization transformations that can be accessed through biocatalysis.

摘要

氢原子转移(HAT)是生物学和化学中用于使有机分子中普遍存在的C(sp)-H键官能化的一种强大机制。尽管其具有合成潜力,但在化学HAT介导的C-H官能化转化中实现立体控制仍然具有挑战性。通过将硫胺素(ThDP)依赖性酶的自由基反应性与化学氢原子转移相结合,我们在此报告了一种光生物催化策略,用于对有机底物进行对映选择性C(sp)-H酰化,这种转化在自然界中不存在,目前也无法通过化学方法实现。该方法能够使多种底物中的苄基C(sp)-H位点直接官能化,以高对映选择性(高达96% ee)提供有价值的对映体富集酮基序。机理和光谱研究支持源自布雷斯洛中间体和C-H底物的自由基物种的参与,突出了光催化剂和氢原子提取试剂对有效催化的关键作用,并揭示了催化过程中有利于单电子转移的特定酶/光催化剂相互作用。通过分子建模,进一步深入了解了C-C键形成反应的对映选择性是如何由酶控制以及受活性位点突变影响的。这项研究说明了ThDP介导的生物催化与化学HAT的有效整合,扩展了可通过生物催化实现的不对称C(sp)-H官能化转化的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验