LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain.
LPI, ETSI Telecomunicación, Universidad de Valladolid, Spain; AGH University of Science and Technology, Kraków, Poland.
Med Image Anal. 2023 Feb;84:102728. doi: 10.1016/j.media.2022.102728. Epub 2022 Dec 9.
Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower b-values) and HARDI (for higher b-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited. In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice whose extent covers the range of acquired b-values, hence being acquisition-dependent. The Discrete Fourier Transform (DFT) is afterwards used to compute the corresponding Cartesian sampling of the Ensemble Average Propagator (EAP) in an entirely non-parametric way. From this lattice, diffusion markers such as the Return To Origin Probability (RTOP) or the Mean Squared Displacement (MSD) can be numerically estimated. We aim at re-formulating this scheme by means of a Fourier Transform encoding matrix that eliminates the need for q-space re-gridding at the same time it preserves the non-parametric nature of HYDI-DSI. The encoding matrix is adaptively designed at each voxel according to the underlying DTI approximation, so that an optimal sampling of the EAP can be pursued without being conditioned by the particular acquisition protocol. The estimation of the EAP is afterwards carried out as a regularized Quadratic Programming (QP) problem, which allows to impose positivity constraints that cannot be trivially embedded within the conventional HYDI-DSI. We demonstrate that the definition of the encoding matrix in the adaptive space allows to analytically (as opposed to numerically) compute several popular descriptors of diffusion with the unique source of error being the cropping of high frequency harmonics in the Fourier analysis of the attenuation signal. They include not only RTOP and MSD, but also Return to Axis/Plane Probabilities (RTAP/RTPP), which are defined in terms of specific spatial directions and are not available with the former HYDI-DSI. We report extensive experiments that suggest the benefits of our proposal in terms of accuracy, robustness and computational efficiency, especially when only standard, non-dedicated q-space samplings are available.
混合扩散成像(HYDI)是最早尝试利用 q 空间的多壳采样来推断扩散张量成像(DTI)或高角分辨率扩散成像(HARDI)以外的扩散性质的方法之一。HYDI 旨在作为一种灵活的协议,同时嵌入 DTI(用于较低的 b 值)和 HARDI(用于较高的 b 值)处理,以及在充分利用整个数据集时进行扩散谱成像(DSI)。在后一种情况下,q 空间的球形采样通过插值重新网格化到笛卡尔晶格上,该晶格的范围覆盖了所采集的 b 值范围,因此是与采集相关的。随后,离散傅里叶变换(DFT)用于以完全非参数的方式计算相应的笛卡尔采样的整体平均传播器(EAP)。从这个晶格中,可以数值估计扩散标记,如返回原点概率(RTOP)或均方位移(MSD)。我们的目标是通过傅里叶变换编码矩阵重新构建这个方案,同时消除 q 空间重新网格化的需要,同时保留 HYDI-DSI 的非参数性质。编码矩阵根据每个体素的基本 DTI 逼近自适应设计,以便可以在不受特定采集协议约束的情况下追求对 EAP 的最佳采样。EAP 的估计随后作为正则化二次规划(QP)问题进行,这允许施加不能在传统的 HYDI-DSI 中轻易嵌入的正约束。我们证明了在自适应空间中定义编码矩阵可以分析地(而不是数值地)计算几个流行的扩散描述符,唯一的误差源是在衰减信号的傅里叶分析中裁剪高频谐波。它们不仅包括 RTOP 和 MSD,还包括返回轴/平面概率(RTAP/RTPP),它们是根据特定的空间方向定义的,并且在以前的 HYDI-DSI 中不可用。我们报告了广泛的实验,表明了我们的提议在准确性、鲁棒性和计算效率方面的优势,尤其是在只有标准的、非专用的 q 空间采样可用的情况下。
Med Image Anal. 2023-2
PLoS One. 2020-3-9
Neuroimage. 2007-7-1
Inf Process Med Imaging. 2015
Med Image Comput Comput Assist Interv. 2011
Med Image Anal. 2010-7-14
Brain Sci. 2023-10-23